Pearson Edexcel

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level
In Pure Mathematics P4 (WMA14)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number 74329
Publications Code WMA14_01_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75 .
Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.
' M ' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
' A ' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).
A and B marks may be f.t. - follow through - marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working
- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- \quad means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

(NB specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

- Factorisation

○ $\quad\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
○ $\quad\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

- Formula
- Attempt to use the correct formula (with values for a, b and c).
- Completing the square
- Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

- Differentiation
- Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
- Integration
- Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

- Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.
- Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Marks
1(a)	$\left(\frac{1}{4}-\frac{1}{2} x\right)^{-\frac{3}{2}}=8(1-2 x)^{-\frac{3}{2}}$	B1
	$(1-2 x)^{-\frac{3}{2}}=1+\left(-\frac{3}{2}\right)(-2 x)+\frac{-\frac{3}{2}\left(-\frac{3}{2}-1\right)}{2!}(-2 x)^{2}+\frac{-\frac{3}{2}\left(-\frac{3}{2}-1\right)\left(-\frac{3}{2}-2\right)}{3!}(-2 x)^{3}+\ldots$	M1 A1
	$\left(\frac{1}{4}-\frac{1}{2} x\right)^{-\frac{3}{2}}=8+24 x+60 x^{2}+140 x^{3}+\ldots$	A1, A1
		(5)
(b)	$n=2$	B1
		(1)
(c)	$\left(\frac{1}{4}-\frac{1}{2} x\right)^{2}=\frac{1}{16}-\frac{1}{4} x+\frac{1}{4} x^{2}$	B1
	$\begin{aligned} & \left(\frac{1}{4}-\frac{1}{2} x\right)^{\frac{1}{2}}=\left(\frac{1}{16}-\frac{1}{4} x+\frac{1}{4} x^{2}\right)\left(8+24 x+60 x^{2}+140 x^{3}+\ldots\right) \\ & =8 \times \frac{1}{16}+24 x \times \frac{1}{16}+60 x^{2} \times \frac{1}{16}-8 \times \frac{1}{4} x-24 x \times \frac{1}{4} x+8 \times \frac{1}{4} x^{2} \end{aligned}$	M1
	$=\frac{1}{2}-\frac{1}{2} x-\frac{1}{4} x^{2}+\ldots$	A1
		(3)
		Total 9

(a)

B1: Takes out the correct and simplified common factor to obtain $8(1 \pm \ldots)^{-\frac{3}{2}}$ Implied by an expansion $8+\ldots$
M1: Attempts the binomial expansion of $(1 \pm k x)^{-\frac{3}{2}}$ to get the third and/or fourth term with an acceptable structure. The correct binomial coefficient must be combined with the correct power of x.
Look for $\frac{-\frac{3}{2}\left(-\frac{3}{2}-1\right)}{2!}(\pm k x)^{2}$ or $\frac{-\frac{3}{2}\left(-\frac{3}{2}-1\right)\left(-\frac{3}{2}-2\right)}{3!}(\pm k x)^{3}$ with or without the brackets on the $k x$
Even allow with $k=1$
A1: Correct simplified or unsimplified expansion for $(1-2 x)^{-\frac{3}{2}}$. (NB simplified is $1+3 x+\frac{15}{2} x^{2}+\frac{35}{2} x^{3}+\ldots$)
A1: Two correct and simplified terms of $8+24 x+60 x^{2}+140 x^{3}$
A1: All correct and simplified $8+24 x+60 x^{2}+140 x^{3} \quad$ Ignore extra terms of x^{4} and above
(b)

B1: Correct value, $n=2$. Do NOT allow incomplete answers such as $\frac{4}{2}$
(c) Hence

B1: Correct expansion of $\left(\frac{1}{4}-\frac{1}{2} x\right)^{2}$, simplified or unsimplified
M1: Attempts correct strategy to find expansion.
Terms do not need to be collected. There may be other terms as well, for example terms in x^{3}
Look for an attempt to find 4 or more terms from the following (condoning slips)
$\left(A+B x+C x^{2}\right)\left(E+F x+G x^{2}+H x^{3}+\ldots\right)=A E+A F x+A G x^{2}+B E x+B F x^{2}+C E x^{2}+\ldots$
A1: Correct simplified expansion. Ignore extra terms of x^{3} and above
(c) Otherwise: Applies binomial expansion to $\left(\frac{1}{4}-\frac{1}{2} x\right)^{\frac{1}{2}}$

B1: Correct simplified expression $\left(\frac{1}{4}-\frac{1}{2} x\right)^{\frac{1}{2}}=\frac{1}{2}(1-2 x)^{\frac{1}{2}}$
M1: Correct structure for 3rd term: $\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}(-2 x)^{2}$ but allow $\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}(\pm k x)^{2}$ with or without brackets. Even allow with $k=1$
A1: $\frac{1}{2}-\frac{1}{2} x-\frac{1}{4} x^{2}+\ldots$ Ignore extra terms of x^{3} and above

Direct expansion in (a)
$\left(\frac{1}{4}-\frac{1}{2} x\right)^{-\frac{3}{2}}=\left(\frac{1}{4}\right)^{-\frac{3}{2}}+\left(-\frac{3}{2}\right)\left(\frac{1}{4}\right)^{-\frac{5}{2}}\left(-\frac{1}{2} x\right)+\frac{\left(-\frac{3}{2}\right) \times\left(-\frac{5}{2}\right)}{2}\left(\frac{1}{4}\right)^{-\frac{7}{2}}\left(-\frac{1}{2} x\right)^{2}+\frac{\left(-\frac{3}{2}\right) \times\left(-\frac{5}{2}\right) \times\left(-\frac{7}{2}\right)}{3!}\left(\frac{1}{4}\right)^{-\frac{9}{2}}\left(-\frac{1}{2} x\right)^{3}$
B1: Obtains an expansion with a constant term of 8
M1: Attempts the binomial expansion of $\left(\frac{1}{4}-\frac{1}{2} x\right)^{-\frac{3}{2}}$ to get the third and/or fourth term with an acceptable structure.
Look for $\frac{\left(-\frac{3}{2}\right) \times\left(-\frac{5}{2}\right)}{2}\left(\frac{1}{4}\right)^{-\frac{7}{2}}\left(\pm \frac{1}{2} x\right)^{2}$ or $\frac{\left(-\frac{3}{2}\right) \times\left(-\frac{5}{2}\right) \times\left(-\frac{7}{2}\right)}{3!}\left(\frac{1}{4}\right)^{-\frac{9}{2}}\left(\pm \frac{1}{2} x\right)^{3}$
with or without the brackets on the $\left(\pm \frac{1}{2} x\right)$
A1: Correct simplified or unsimplified expansion .
Expression at the top of the page is acceptable
A1: Two correct and simplified terms of $8+24 x+60 x^{2}+140 x^{3}$
A1: All correct and simplified $8+24 x+60 x^{2}+140 x^{3}$
Direct expansion in (c)
B1: First two terms which may be unsimplified $\left(\frac{1}{4}-\frac{1}{2} x\right)^{\frac{1}{2}}=\left(\frac{1}{4}\right)^{\frac{1}{2}}+\frac{1}{2}\left(\frac{1}{4}\right)^{-\frac{1}{2}}\left(-\frac{1}{2} x\right)^{1}+\ldots$
M1: Correct form for the third term $\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2}\left(\frac{1}{4}\right)^{-\frac{3}{2}}\left(-\frac{1}{2} x\right)^{2}$
A1: Correct simplified expansion $\frac{1}{2}-\frac{1}{2} x-\frac{1}{4} x^{2}+\ldots$

Question Number	Scheme	Marks
2(a)	$x=2 \Rightarrow 4-8 y+y^{2}=13 \Rightarrow\left(y^{2}-8 y-9=0 \Rightarrow\right) y=\ldots$	M1
	$y=9$	A1
		(2)
(b)	$2^{x} \rightarrow 2^{x} \ln 2$	B1
	$-4 x y \rightarrow-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-4 y \quad \text { OR } \quad y^{2} \rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	M1
	$2^{x} \ln 2-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-4 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}(2 y-4 x)=4 y-2^{x} \ln 2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots$	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 y-2^{x} \ln 2}{2 y-4 x} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2^{x} \ln 2-4 y}{4 x-2 y} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\ln 2 \mathrm{e}^{x \ln 2}-4 y}{4 x-2 y}$	A1
		(5)
(c)	$\begin{aligned} &(2,9) \rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4(9)-2^{2} \ln 2}{2(9)-4(2)} \\ & \quad \Rightarrow y-" 9 "=" \frac{36-4 \ln 2}{10} "(x-2) \end{aligned}$	M1
	$y=0 \Rightarrow 0-49 "=" \frac{36-4 \ln 2}{10} "(x-2) \Rightarrow x=\ldots$	dM1
	$x=\frac{4 \ln 2+9}{2 \ln 2-18} \text { o.e. e.g. } x=\frac{-8 \ln 2-18}{-4 \ln 2+36}$	A1
		(3)
		Total 10

(a)

M1: Substitutes $x=2$ into the equation for C, forms a quadratic equation in y and then solves to obtain at least one value for y
A1: $y=9$ only
(b) It is acceptable to use $y^{\prime} \leftrightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}$ in this question

B1: Correct differentiation of 2^{x}. Allow also $2^{x}=\mathrm{e}^{x \ln 2} \rightarrow \mathrm{e}^{x \ln 2} \ln 2$
M1: Differentiates $-4 x y \rightarrow \pm A x \frac{\mathrm{~d} y}{\mathrm{~d} x} \pm B y \quad$ OR differentiates $y^{2} \rightarrow k y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
A1: Fully correct differentiation. Allow versions such as $2^{x} \ln 2 \mathrm{~d} x-4 x \mathrm{~d} y-4 y \mathrm{~d} x+2 y \mathrm{~d} y=0$
M1: Attempts to make $\frac{\mathrm{d} y}{\mathrm{~d} x}$ the subject with the 2 terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ coming from differentiating y^{2} and $-4 x y$ A1: Any correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Note that you can isw after a correct answer. $\frac{2 y-2^{x-1} \ln 2}{y-2 x}$ is correct

M1: Uses $x=2$ and their y value from part (a) to find the gradient at P and attempts to form the equation of the tangent at P. Condone poor attempts at differentiation but $\frac{\mathrm{d} y}{\mathrm{~d} x}$ must have both x and y terms.
If the form $y=m x+\mathrm{c}$ is used they must proceed as far as $c=.$.
dM1: Substitutes $y=0$ into their tangent equation and rearranges to find x. Dependent upon previous M It is possible for a method to combine this with the previous M.
Look for methods like the following, which score M1, dM1
$-" 9 "=" m "(x-2) \Rightarrow x=\ldots$ where ' m ' is the value of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=2$
or $\frac{" 9 "}{2-x}=" m " \Rightarrow x=\ldots$ where ' m ' is the value of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=2$
A1: Correct expression in the required form. Must come from a correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Do not be concerned about the order of the terms on the numerator and denominator

Question Number	Scheme	Marks
3(a)	$\frac{8 x-5}{(2 x-1)(4 x-3)} \equiv \frac{A}{2 x-1}+\frac{B}{4 x-3} \Rightarrow 8 x-5=A(4 x-3)+B(2 x-1) \Rightarrow A=\ldots B=\ldots$	M1
	$A=1$ or $B=2$	A1
	$\frac{8 x-5}{(2 x-1)(4 x-3)} \equiv \frac{1}{2 x-1}+\frac{2}{4 x-3}$	A1
		(3)
(b)	$\int\left(\frac{1}{2 x-1}+\frac{2}{4 x-3}\right) \mathrm{d} x=\frac{1}{2} \ln \|2 x-1\|+\frac{1}{2} \ln \|4 x-3\|(+c)$ Follow through their A and B	M1, A1ft, A1ft
		(3)
(c)	$\begin{aligned} {\left[\frac{1}{2} \ln (2 x-1)+\frac{1}{2} \ln (4 x-3)\right]_{k}^{3 k} } & =\frac{1}{2} \ln (6 k-1)(12 k-3)-\frac{1}{2} \ln (2 k-1)(4 k-3) \\ = & \frac{1}{2} \ln \frac{(6 k-1)(12 k-3)}{(2 k-1)(4 k-3)} \end{aligned}$	M1
	$\begin{aligned} & \frac{1}{2} \ln \frac{(6 k-1)(12 k-3)}{(2 k-1)(4 k-3)}=\frac{1}{2} \ln 20 \Rightarrow \\ \Rightarrow & (6 k-1)(12 k-3)=20(2 k-1)(4 k-3) \Rightarrow 88 k^{2}-170 k+57=0 \end{aligned}$	dM1A1
	$88 k^{2}-170 k+57=0 \Rightarrow k=\ldots$	ddM1
	$k=\frac{3}{2}$	A1
		(5)
		Total 11

(a)

M1: "Correct" P.F form (condoning slips) with strategy to find at least one constant or partial fraction.
Look for an attempt at the correct form (condoning slips) $5-8 x=A(4 x-3)+B(2 x-1)$ followed by values for A or B
A1: One correct fraction or constant
A1: Correct partial fractions which may be awarded for sight of correct PF in part (b).
Award if the correct answer is just written down with little or no working.
Award if the correct partial fractions are seen in (b)
(b)

M1: For $\int \frac{\alpha}{2 x-1} \mathrm{~d} x=\beta \ln |2 x-1| \quad$ OR $\int \frac{\alpha}{4 x-3} \mathrm{~d} x=\beta \ln |4 x-3|$
Allow for example brackets instead of moduli, e.g. $\ln (2 x-1) \leftrightarrow \ln |2 x-1|$
Condone the omission of moduli/brackets, for example $\int \frac{\alpha}{2 x-1} \mathrm{~d} x=\beta \ln 2 x-1$ for this mark only
A1ft: For $\int \frac{A}{2 x-1} \mathrm{~d} x=\frac{A}{2} \ln |2 x-1|$ OR $\int \frac{B}{4 x-3} \mathrm{~d} x=\frac{B}{4} \ln |4 x-3|$ Follow through their A and B
Allow for example brackets instead of moduli, e.g. $\ln (2 x-1) \leftrightarrow \ln |2 x-1|$

A1ft: For $\int \frac{A}{2 x-1} \mathrm{~d} x+\int \frac{B}{4 x-3} \mathrm{~d} x=\frac{A}{2} \ln |2 x-1|+\frac{B}{4} \ln |4 x-3|$
or $\int \frac{A}{2 x-1} \mathrm{~d} x+\int \frac{B}{4 x-3} \mathrm{~d} x=\frac{A}{2} \ln (2 x-1)+\frac{B}{4} \ln (4 x-3)$
Follow through their numerical A and B. There is no requirement for the $+c$
ISW after a correct answer. This can be awarded (but not implied) from part (c)
Note that $\frac{1}{2} \ln (2 x-1)(4 x-3)(+c)$ and $\ln \sqrt{(2 x-1)(4 x-3)}(+c)$ are also correct
(c)

M1: Attempts the use of the correct limits and uses correct log work to combine terms to obtain a single \ln term. It is dependent upon having an answer to part (b) involving two ln terms.
Condone slips/ bracketing errors .
E.g $\left\{\frac{1}{2} \ln (6 k-1)+\frac{1}{2} \ln (12 k-3)\right\}-\left\{\frac{1}{2} \ln (2 k-1)+\frac{1}{2} \ln (4 k-3)\right\}=\frac{1}{2} \ln (6 k-1)+\frac{1}{2} \ln (12 k-3)-\frac{1}{2} \ln (2 k-1)+\frac{1}{2} \ln (4 k-3)$

$$
=\frac{1}{2} \ln \frac{(6 k-1)(12 k-3)(4 k-3)}{(2 k-1)}
$$

dM1: Eliminates \ln 's, multiplies up and collects terms to form a polynomial equation in k.
It is dependent upon the previous M
A1: Correct 3TQ. The $=0$ may be implied by subsequent work
ddM1: Solves 3TQ. Dependent upon both previous M's.
Can be solved via a graphical calculator (you may need to check the answers)
A1: Correct value and no others. Condone $x=\frac{3}{2}$

Solution with limited working in (c)

Case I
$\frac{1}{2} \ln \frac{(6 k-1)(12 k-3)}{(2 k-1)(4 k-3)}=\frac{1}{2} \ln 20 \Rightarrow x$ or $k=\frac{3}{2} \quad$ SC 11000

Case II

$$
\begin{equation*}
\frac{(6 k-1)(12 k-3)}{(2 k-1)(4 k-3)}=20 \Rightarrow x \text { or } k=\frac{3}{2} \tag{SC 11100}
\end{equation*}
$$

Question Number	Scheme	Marks
4(a)	Attempts direction vector by subtracting $(5 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k})$ and $(4 \mathbf{i}+8 \mathbf{j}+\mathbf{k})$ either way around.	M1
	E.g. $\mathbf{r}=4 \mathbf{i}+8 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}), \quad \mathbf{r}=5 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})$	A1
		(2)
(b)	E.g $\overrightarrow{P C}=\left(\begin{array}{c}4+\lambda \\ 8-2 \lambda \\ 1+2 \lambda\end{array}\right)-\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}2+\lambda \\ 10-2 \lambda \\ 2 \lambda\end{array}\right)$	M1
	$\begin{gathered} \text { Uses } \overrightarrow{P C} .(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})=0 \\ \text { E.g. } \Rightarrow 1(2+\lambda)-2(10-2 \lambda)+2 \times 2 \lambda=0 \Rightarrow \lambda=\ldots \end{gathered}$	dM1
	E.g I $\lambda=2 \Rightarrow \mathbf{c}=(4+2) \mathbf{i}+(8-4) \mathbf{j}+(1+4) \mathbf{k}$ E.g II $\mu=1 \Rightarrow \mathbf{c}=(5+1) \mathbf{i}+(6-2) \mathbf{j}+(3+2) \mathbf{k}$	ddM1
	$(6,4,5)$	A1
		(4)
(c)	$\overrightarrow{O P^{\prime}}=\mathbf{p}+2 \overrightarrow{P C}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}+2(4 \mathbf{i}+6 \mathbf{j}+4 \mathbf{k})$	M1
	(10, 10, 9)	A1
		(2)
(d)	$\left\|\overrightarrow{P P^{\prime}}\right\|=2\|\overrightarrow{P C}\|=2 \sqrt{4^{2}+6^{2}+4^{2}}=\ldots$	M1
	$4 \sqrt{17}$	A1
		(2)
		Total 10

General rule in this question: If no method is shown look for two "correct" components for their vector
(a) There are many correct versions so please check the candidates answer carefully

M1: Attempts the direction of l by subtracting $(5 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k})$ and $(4 \mathbf{i}+8 \mathbf{j}+\mathbf{k})$ either way around.
If no method is shown look for two correct components of $(\pm \mathbf{i} \pm 2 \mathbf{j} \pm 2 \mathbf{k})$ or a multiple of this
A1: Any correct equation including the lhs of ' $\mathbf{r}=$ '
Allow in the form $\mathbf{r}=\left(\begin{array}{l}4 \\ 8 \\ 1\end{array}\right)+\lambda\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)$ but $l=\left(\begin{array}{l}4 \\ 8 \\ 1\end{array}\right)+\lambda\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)$ and is $\mathbf{r}=\left(\begin{array}{c}4 \\ 8 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}\mathrm{i} \\ -2 \mathrm{j} \\ 2 \mathrm{k}\end{array}\right) \mathrm{A} 0$
(b)

M1: Attempts the general vector from P to l forming $\overrightarrow{P C}$ where C is a general point on l.
Look for an attempt to subtract their " $\left(\begin{array}{c}4+\lambda \\ 8-2 \lambda \\ 1+2 \lambda\end{array}\right)$ " and $\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$ either way around
dM1: Attempts $\overrightarrow{P C}$.their $(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})=0$ and solves for λ.
It is dependent upon the previous M and the scalar product of this vector must be attempted with their gradient for the line l to produce and solve a linear equation for λ.
ddM1: Uses their λ to find C. Scored for substituting their correctly found λ into their equation for l
A1: Correct coordinates or vector.
Only penalise an error such as $\left(\begin{array}{c}6 \mathrm{i} \\ 4 \mathrm{j} \\ 5 \mathrm{k}\end{array}\right)$ once, the first time that it is made. Hence award if a mark has already been withheld for such a mistake.

M1: Correct strategy for $\overrightarrow{O P^{\prime}}$ Can be implied by two correct coordinates using their P and C
For example look for $\overrightarrow{O P^{\prime}}=\overrightarrow{O P}+2 \times \overrightarrow{P C}$ using the coordinates of C found in part (b).
A1: Correct coordinates or vector
(d)

M1: Correct method for $\left|\overrightarrow{P P^{\prime}}\right|$ using their values for P and P^{\prime} or P and C or P^{\prime} and C. E.g $\left|\overrightarrow{P P^{\prime}}\right|=2 \times|\overrightarrow{P C}|$ There are many ways to do this but it must be a complete method, not a distance squared.
A1: CAO

Alternative part (b) using shortest distance

M1: Attempts the general vector from P to l.
Look for an attempt to subtract their " $\left(\begin{array}{c}4+\lambda \\ 8-2 \lambda \\ 1+2 \lambda\end{array}\right)$ " and $\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$ either way around
dM 1 : Finds an expression for d or d^{2}, differentiates and sets $=0$ to find λ.
As it is a quadratic expression an equivalent method would be via completing the square .
FYI : $D^{2}=(2+\lambda)^{2}+(10-2 \lambda)^{2}+(2 \lambda)^{2}=9 \lambda^{2}-36 \lambda+104 \Rightarrow \frac{\mathrm{~d} D^{2}}{\mathrm{~d} \lambda}=18 \lambda-36=0 \Rightarrow \lambda=2$
ddM1: Uses their λ to find C.
A1: Correct coordinates or vector

Alternative part (b) using Pythagoras' Theorem

M1: Attempts the general vector from P to l.
Look for an attempt to subtract their " $\left(\begin{array}{c}4+\lambda \\ 8-2 \lambda \\ 1+2 \lambda\end{array}\right)$ " and $\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$ either way around
dM 1 : Uses $P C^{2}+C B^{2}=P B^{2}$ or $P C^{2}+C A^{2}=P A^{2}$ to set up and solve an equation in λ.
E.g Using $P C^{2}+C B^{2}=P B^{2}$ the equations are

$$
\begin{aligned}
& (2+\lambda)^{2}+(10-2 \lambda)^{2}+(2 \lambda)^{2}+(\lambda-1)^{2}+(2-2 \lambda)^{2}+(2 \lambda-2)^{2}=77 \\
& \Rightarrow 18 \lambda^{2}-54 \lambda+36=0 \Rightarrow \lambda=2(1)
\end{aligned}
$$

ddM1: Uses their λ to find C.
A1: Correct coordinates or vector

Question Number	Scheme	Marks
5(i)	$\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=x^{2} \mathrm{e}^{x}-\int 2 x \mathrm{e}^{x} \mathrm{~d} x(+c)$	M1A1
	$\int x \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x(+c)$	M1
	$\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}(+c)$ Also allow $\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=x^{2} \mathrm{e}^{x}-\left(2 x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)(+c)$	A1
		(4)
(ii)	$\begin{gathered} u=(1-3 x)^{\frac{1}{2}} \Rightarrow u^{2}=1-3 x \Rightarrow 2 u \frac{\mathrm{~d} u}{\mathrm{~d} x}=-3 \\ u=(1-3 x)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\frac{3}{2}(1-3 x)^{-\frac{1}{2}} \end{gathered}$	B1
	$\begin{gathered} \int \frac{27 x}{\sqrt{1-3 x}} \mathrm{~d} x=27 \int \frac{\frac{1-u^{2}}{3}}{u}\left(-\frac{2 u}{3}\right) \mathrm{d} u \\ \int \frac{27 x}{\sqrt{1-3 x}} \mathrm{~d} x=27 \int \frac{\frac{1-u^{2}}{3}}{\sqrt{1-3 x}}\left(-\frac{2}{3} \sqrt{1-3 x}\right) \mathrm{d} u \end{gathered}$	M1
	$6 \int\left(u^{2}-1\right) \mathrm{d} u$ or $-6 \int\left(1-u^{2}\right) \mathrm{d} u$	A1
	$6\left(\frac{u^{3}}{3}-u\right)(+k)$	A1ft
	$6\left(\frac{(1-3 x)^{\frac{3}{2}}}{3}-(1-3 x)^{\frac{1}{2}}\right)(+k)=2(1-3 x)^{\frac{1}{2}}(1-3 x-3)(+k)$	M1
	$=-2(1-3 x)^{\frac{1}{2}}(2+3 x)(+k) \quad$ or $\quad=-2(1-3 x)^{\frac{1}{2}}(3 x+2)(+k)$	A1
		(6)
		Total 10

(i) Condone missing $\mathrm{d} x$'s here

M1: For applying parts to obtain $x^{2} \mathrm{e}^{x}-k \int x \mathrm{e}^{x} \mathrm{~d} x(+c)$ where $k>0$
A1: Correct expression. No requirement for $+c$
M1: Applies parts again to $\int x \mathrm{e}^{x} \mathrm{~d} x$ and obtains $\int x \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\alpha \int \mathrm{e}^{x} \mathrm{~d} x(+c)$ where $\alpha>0$
Note that if the whole expression is written out then this mark is implied by
$\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=x^{2} \mathrm{e}^{x}-\alpha x \mathrm{e}^{x} \pm \int \beta \mathrm{e}^{x} \mathrm{~d} x$ or $\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=x^{2} \mathrm{e}^{x}-\alpha x \mathrm{e}^{x} \pm \beta \mathrm{e}^{x}$ where $\alpha>0$

A1: Correct answer ($+c$ not required)
Watch for $\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=x^{2} \mathrm{e}^{x}-\left(2 x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)(+c)$ which scores all 4 marks. ISW after sight of this
Watch for D \& I method which may be seen. You will just see the answer here.

$$
=x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}
$$

(ii)

B1: Any correct expression involving $\frac{\mathrm{d} u}{\mathrm{~d} x}$ which may be "split" E.g. $\mathrm{d} u=-\frac{3}{2}(1-3 x)^{-\frac{1}{2}} \mathrm{~d} x$
M1: Substitutes $x=\mathrm{f}\left(u^{2}\right)$ to fully change the integrand from $\frac{27 x}{\sqrt{1-3 x}} \mathrm{~d} x$ to $k \frac{\mathrm{f}\left(u^{2}\right)}{u} u \mathrm{~d} u$ o.e.
Note that the u 's may have been cancelled.
Condone the $\mathrm{d} u$ not being present but it cannot appear as $\mathrm{d} x$
A1: Correct simplified integral. Look for the u 's being cancelled and some simplification/collection of the constant terms
Look for, for example. integrals such as $6 \int\left(u^{2}-1\right) \mathrm{d} u, \int 6 u^{2}-6 \mathrm{~d} u,-6 \int\left(1-u^{2}\right) \mathrm{d} u$ or even $-\frac{2}{3} \int\left(9-9 u^{2}\right) \mathrm{d} u \quad$ The brackets may be implied by subsequent work
Condone the $\mathrm{d} u$ not being present as long as it is implied by subsequent integration
A1ft: Correct follow through integration on their simplified integral.
It is dependent upon having achieved an integral of the form above
E.g. $\alpha \int\left(u^{2}-1\right) \mathrm{d} u$ or $\beta \int\left(1-u^{2}\right) \mathrm{d} u \quad \alpha, \beta>0$. No requirement for $+k$

M1: Achieves an integral of $P u^{3}+Q u$ and

- "correctly" takes out a common factor of u or $(1-3 x)^{\frac{1}{2}}$ for their $P u^{3}+Q u$ or
$\alpha(1-3 x)^{\frac{3}{2}}+\beta(1-3 x)^{\frac{1}{2}}$ AND proceeds to the form $(1-3 x)^{\frac{1}{2}}(\delta(1-3 x)+\varepsilon)$ or better. Condone slips on coefficients
- substitutes $u=(1-3 x)^{\frac{1}{2}}$

A1: CAO. No requirement for $+k$

Question Number	Scheme	Marks
6(a)	$\frac{\mathrm{d} \theta}{\mathrm{d} t}=-k(\theta-15)^{2} \Rightarrow \int \frac{\mathrm{~d} \theta}{(\theta-15)^{2}}=\int-k \mathrm{~d} t$	B1
	$\int \frac{\mathrm{d} \theta}{(\theta-15)^{2}}=-(\theta-15)^{-1}$	M1
	$-\frac{1}{\theta-15}=-k t+c$	A1
	$t=0, \theta=85 \Rightarrow-\frac{1}{70}=c$	M1
	$t=10, \theta=40 \Rightarrow \frac{1}{25}=10 k+\frac{1}{70} \Rightarrow k=\ldots\left(\frac{9}{3500}\right)$	M1
	$\frac{1}{\theta-15}=\frac{9 t}{3500}+\frac{1}{70} \Rightarrow \theta=\ldots$	M1
	$\theta=\frac{135 t+4250}{9 t+50}$	A1
		(7)
(b)	$20=\frac{135 t+4250}{9 t+50} \Rightarrow t=\ldots$	M1
	$t=$ awrt 72	A1
		(2)
		Total 9

(a) Note that candidates cannot work backwards from the answer using differentiation

B1: Correct separation of variables.
The integral signs do not have to be present, but the $\mathrm{d} \theta$ and $\mathrm{d} t$ do, and be in the correct positions
M1: Integrates $\int \frac{1}{(\theta-15)^{2}} \mathrm{~d} \theta$ to $\frac{\alpha}{\theta-15}$
A1: Correct equation including a k and another different constant.
M1: Uses $t=0, \theta=85$ to find " c ". May be awarded after incorrect integration. May be also awarded if the constant k had been assigned a value using given values of θ and t.
Their initial equation may have been (incorrectly) adapted but it must be solvable with $t=0, \theta=85$ used leading to $\mathrm{c}=. .$.

M1: Uses $\mathrm{t}=10$ and $\theta=40$ with their value of " c " to find k .
May be awarded after incorrect integration but there must have been two constants. Their initial equation may have been adapted but it must be solvable with $\mathrm{t}=10, \theta=40$ AND their $\mathrm{c}=\ldots$

M1: Rearranges using correct algebra to obtain θ in terms of t.
For this to be awarded the integral must be in the correct form and both constants found using a correct method. Condone slips in working but the overall process should be sound.
Look for $\frac{1}{\theta-15}=\alpha t+\beta \Rightarrow \theta=\frac{c t+d}{e t+f}$
A1: Correct expression. Allow integer multiples of the given answer E.g. $\theta=\frac{297500+9450 t}{3500+630 t}$
(b)

M1: Uses their answer to part (a) or equivalent (or possibly an earlier equation) to find t when $\theta=20$.
For this to be awarded, substitute $\theta=20$ into a "correct" form such as $\frac{1}{\theta-15}=\alpha t+\beta \Rightarrow t=\ldots$
Or substitute $\theta=20$ into a "correct" form such as $\theta=\frac{c t+d}{e t+f} \Rightarrow t=\ldots$ where $c, d, e, f \neq 0$
They cannot just make values up for the c, d, e and f for example. It must follow their work in (a)
A1: Correct value which must have come from a correct equation. Exact value is $\frac{650}{9}$ but allow awrt 72
Of course candidates can move the " k " or " $-k$ " term over to the LHS or use limits .

6(a)	$\frac{\mathrm{d} \theta}{\mathrm{d} t}=-k(\theta-15)^{2} \Rightarrow \int \frac{\mathrm{~d} \theta}{-k(\theta-15)^{2}}=\int \mathrm{d} t$	B1
	$\int \frac{\mathrm{d} \theta}{(\theta-15)^{2}}=\alpha(\theta-15)^{-1}$	M1
	$\frac{1}{k(\theta-15)}=t+\beta$	A1
	$t=0, \theta=85 \Rightarrow \frac{1}{70 k}=\beta$	M1
	$t=10, \theta=40 \Rightarrow \frac{1}{25 k}=\beta+10 \Rightarrow k=\ldots\left(\frac{9}{3500}\right) \quad \beta=\ldots\left(\frac{50}{9}\right)$	M1
	$\frac{3500}{9(\theta-15)}=t+\frac{50}{9} \Rightarrow \theta=\ldots$	M1
	$\theta=\frac{135 t+4250}{9 t+50}$	A1

6(a)	$\frac{\mathrm{d} \theta}{\mathrm{d} t}=-k(\theta-15)^{2} \Rightarrow \int \frac{\mathrm{~d} \theta}{(\theta-15)^{2}}=\int-k \mathrm{~d} t$	B1
	$\int \frac{\mathrm{d} \theta}{(\theta-15)^{2}}=-(\theta-15)^{-1}$	M1
	Correct equation using limits $\left[-\frac{1}{\theta-15}\right]_{85}^{40}=[-k t]_{0}^{10} \quad$ Or $\left[\frac{1}{\theta-15}\right]_{85}^{40}=[k t]_{0}^{10}$	A1
	Correct attempt to find $k \quad-\frac{1}{25}+\frac{1}{70}=-10 k \Rightarrow k=\ldots\left(\frac{9}{3500}\right)$	M1
	Correct attempt to find equation linking θ and $t \quad$ E.g. $\quad\left[-\frac{1}{\theta-15}\right]_{85}^{\theta}=[-k t]_{0}^{t}$	M1
	$-\frac{1}{\theta-15}+\frac{1}{70}=-\frac{9 t}{3500} \Rightarrow \theta=\ldots$	M1
	$\theta=\frac{135 t+4250}{9 t+50}$	A1

Question Number	Scheme	Marks
7	Assume that $\sqrt{7}$ is rational so that $\sqrt{7}=\frac{a}{b} \Rightarrow 7=\frac{a^{2}}{b^{2}}$ (where a and b have no factors in common)	M1
	$7=\frac{a^{2}}{b^{2}} \Rightarrow 7 b^{2}=a^{2}$ So a^{2} is a multiple of 7 which means a is a multiple of 7	A1
	$a=7 k \Rightarrow 7 b^{2}=49 k^{2} \Rightarrow b^{2}=7 k^{2}$	M1
	So b^{2} is a multiple of 7 which means b is a multiple of 7 . As a and b are both multiples of 7, this contradicts the fact that a and b have no factors in common. Hence $\sqrt{ } 7$ must be irrational.	A1
		(4)
		Total 4

Any variables may be used
M1: Starts the proof by contradicting the given statement and squares both sides.
Condone the omission of the statement about common factors here.
As a minimum allow "assume $\sqrt{7}=\frac{a}{b} \Rightarrow 7=\frac{a^{2}}{b^{2}}$ " or similar "let $\sqrt{7}=\frac{p}{q} \Rightarrow p^{2}=7 q^{2}$ "
A1: Reaches for example $7 b^{2}=a^{2}$ and deduces that a^{2} is a multiple of 7 which means a is a multiple of 7 Condone these being the "wrong way around" as long as they state both a and a^{2} are multiples of 7 Look for

- $7 b^{2}=a^{2}$
- states a is a multiple of 7 (which may be implied by setting $a=7 k$ for example)
- states a^{2} is a multiple of 7

M1: Sets $a=7 k$ and proceeds to $b^{2}=7 k^{2}$
A1: Fully Correct proof. This must include

- an initial statement that included that a and b had no common factors. Allow equivalent statements such as $\frac{a}{b}$ is a fraction in simplest form or co-prime, relatively prime, mutually prime
- the statements and conclusions the correct way around.
E.g. a^{2} is a multiple of 7 which means a is a multiple of 7 (not the other way around) and b^{2} is a multiple of 7 which means b is a multiple of 7 (not the other way around)
- a minimal conclusion

Be tolerant of slight issues with terminology/language used as this may not be the students first language.

Question Number	Scheme	Marks
8(a)	$x=2$	B1
		(1)
(b)	$(2.5,1.5)$	B1
		(1)
(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+\frac{1}{t^{2}}}{1-\frac{1}{t^{2}}}$	M1
	$t=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5}{3} \Rightarrow y-1.5=-\frac{3}{5}(x-2.5)$	dM1
	$3 x+5 y=15 *$	A1*
		(3)
(d)	l crosses x-axis at $x=5$	B1
	$\frac{1}{3} \pi \times 1.5^{2}(5-2.5)\left(=\frac{15}{8} \pi\right)$	M1
	$V=\pi \int y^{2} \mathrm{~d} x=\pi \int y^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\pi \int\left(t-\frac{1}{t}\right)^{2}\left(1-\frac{1}{t^{2}}\right) \mathrm{d} t$	M1
	$\pi \int\left(t^{2}-2+\frac{1}{t^{2}}\right)\left(1-\frac{1}{t^{2}}\right) \mathrm{d} t=\pi \int\left(t^{2}+\frac{3}{t^{2}}-\frac{1}{t^{4}}-3\right) \mathrm{d} t=\ldots$	M1
	$\pi\left[\frac{t^{3}}{3}-\frac{3}{t}+\frac{1}{3 t^{3}}-3 t\right]$	A1
	$\pi\left[\frac{t^{3}}{3}-\frac{3}{t}+\frac{1}{3 t^{3}}-3 t\right]_{1}^{2}=\pi\left(\left(\frac{8}{3}-\frac{3}{2}+\frac{1}{24}-6\right)-\left(\frac{1}{3}-3+\frac{1}{3}-3\right)\right)$	M1
	$V=\frac{13}{24} \pi+\frac{15}{8} \pi=\frac{29}{12} \pi$ Cao	A1
		(7)
		Total 12

(a)

B1: Correct value. Just look for 2 and condone $Q=2$
(b)

B1: Correct coordinates. Allow these to be given separately $x=2.5, \quad y=1.5$
(c)

M1: Attempts to differentiate both parameters and use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$ to achieve $\frac{1 \pm \frac{1}{t^{2}}}{1 \pm \frac{1}{t^{2}}}$ or equivalent via quotient rule
dM 1 : Uses $t=2$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and uses the negative reciprocal gradient with their point P to form equation of normal.It is dependent upon the previous M
A1*: Obtains the printed answer with no errors and sufficient working shown.
What is shown in the MS is sufficient
(d)

B1: Correct x intercept for l. This may appear on the x-axis on Figure 2.
It may be implied by the value appearing in the volume of the cone but not the volume under the curve
M1: Fully correct method for the cone volume $\frac{1}{3} \pi \times 1.5 " 2(" 5 "-2.5 ")=$
May be awarded for $\int_{2.5}^{5} \pi(3-0.6 x)^{2} \mathrm{~d} x=\left[\frac{\pi(3-0.6 x)^{3}}{-1.8}\right]_{2.5}^{5}=\frac{\pi(3-0.6 \times 2.5)^{3}}{1.8}$
Condone slips. If they expand $(3-0.6 x)^{2}$ look for a quadratic expression integrating to a cubic of the correct form followed by use of the limits 5 and their 2.5

M1: Correct strategy for the volume generated by rotating the area under the curve
Look for $V=\pi \int y^{2} \mathrm{~d} x=\pi \int y^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$ leading to $\pi \int\left(t-\frac{1}{t}\right)^{2}\left(1 \pm \frac{k}{t^{2}}\right) \mathrm{d} t$, where k is a constant Condone a sign slip on $\frac{\mathrm{d} x}{\mathrm{~d} t}$ so allow $\left(1 \pm \frac{1}{t^{2}}\right)$. The π may be added later in the solution.
The $\mathrm{d} t$ may be omitted
M1: Attempt to expand $\left(t-\frac{1}{t}\right)^{2}\left(1 \pm \frac{k}{t^{2}}\right)$ and integrate term by term.
Look for $\left(t-\frac{1}{t}\right)^{2}\left(1 \pm \frac{k}{t^{2}}\right) \rightarrow$ polynomial in t containing positive and negative indices followed by some correct integration for both positive and negative indices
A1: Correct integration of $\left(t-\frac{1}{t}\right)^{2}\left(1-\frac{1}{t^{2}}\right) \rightarrow \frac{t^{3}}{3}-\frac{3}{t}+\frac{1}{3 t^{3}}-3 t$ which does not need to be simplified
M1: Applies the t limits " 1 " and 2 to an attempt at the integral of $(\pi) \int\left(t-\frac{1}{t}\right)^{2}\left(1 \pm \frac{k}{t^{2}}\right) \mathrm{d} t$ The π does not need to be included.
A1: $\frac{29}{12} \pi$ or exact equivalent.
Part (c) using a calculator
Whilst it is possible to do the integration for the area under the curve using a calculator, it will not score all of the marks.
E.g. $\pi \int_{1}^{2}\left(t-\frac{1}{t}\right)^{2}\left(1-\frac{1}{t^{2}}\right) \mathrm{d} t=0.541 \dot{6} \pi$

The marks in (c) available to such a candidate are:
B1(for $x=5$),
M1 (for volume of cone),
M1 (Sight of correct integral),
M0 (no expansion),
A0,
M1 (sight of limits),
A0

See below for Cartesian approach for (c) and (d)

(c)	$x=t+\frac{1}{t}, \quad y=t-\frac{1}{t} \Rightarrow x^{2}-y^{2}=4 \Rightarrow 2 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ or $y^{2}=x^{2}-4 \Rightarrow y=\left(x^{2}-4\right)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=x\left(x^{2}-4\right)^{-\frac{1}{2}}$ Attempts to differentiate a Cartesian equation of the form $x^{2}-y^{2}=k$ to obtain either $\alpha x+\alpha y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=k x\left(x^{2}-4\right)^{-\frac{1}{2}}$	M1
	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}= & \frac{t+\frac{1}{t}}{t-\frac{1}{t}}=\frac{2.5}{1.5} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=2.5\left(2.5^{2}-4\right)^{-\frac{1}{2}} \\ & \Rightarrow y-1.5=-\frac{3}{5}(x-2.5) \end{aligned}$ Uses $t=2$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and uses the negative reciprocal gradient with their point P. If using explicit differentiation, must attempt x using $t=2$ first	M1
	$3 x+5 y=15^{*}$ Obtains the printed answer with no errors and sufficient working shown.	A1*
		(3)
(d)	l crosses x-axis at $x=5$	B1
	$\frac{1}{3} \pi \times 1.5^{2}(5-2.5)\left(=\frac{15}{8} \pi\right)$ Fully correct method for the cone volume	M1
	$V=\pi \int y^{2} \mathrm{~d} x=\pi \int\left(x^{2}-4\right) \mathrm{d} x$ Correct strategy for the other volume Condone for this $V=\pi \int y^{2} \mathrm{~d} x=\pi \int\left(x^{2}-k\right) \mathrm{d} x$	M1
	$\pi \int\left(x^{2}-4\right) \mathrm{d} x=\pi\left[\frac{x^{3}}{3}-4 x\right]$ M1: Attempt to integrate $\int\left(x^{2}-k\right) \mathrm{d} x$ A1: Correct integration of $\int\left(x^{2}-4\right) \mathrm{d} x$	M1A1
	$\pi\left[\frac{x^{3}}{3}-4 x\right]_{2}^{2.5}$ Applies the limits " 2 " and their x from $t=2$ to an attempted integral of $(\pi) \int\left(x^{2}-k\right) \mathrm{d} x$	M1
	$\begin{gathered} V=\frac{13}{24} \pi+\frac{15}{8} \pi=\frac{29}{12} \pi \\ \text { Cao } \end{gathered}$	A1
		(7)

