

Mark Scheme (Results)

Summer 2012

GCE Statistics S2 (6684) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA033140
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012 6684 Statistics 2 S2 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Summer 2012 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	s
1(a)	$P(L>24) = \frac{1}{15} \times 6$ = $\frac{2}{5}$ or 0.4 oe	M1 A1	(2)
(b)	Let X represent the number of sweets with $L > 24$		
	$X \sim B(20, 0.4)$	M1	
	$P(X \ge 8) = 1 - P(X \le 7)$	M1dep	
	= 1 - 0.4159		
	= 0.5841 awrt 0.584	A1	
			(3)
(c)	P(both $X \ge 8$) = $(0.5841)^2$	M1	
	= 0.341	A1 ft	
			(2)
		Tot	al 7
	notes		
1(a)	M1 $\frac{1}{15}$ ×(6 or 5.5 or 6.5 or (30 – 24)) or 1 - $\frac{1}{15}$ ((24 – 15) or (23.5 – 15) or (24.5 – 15)	5))	
(b)	M1 using B(20, "their (a))		
	M1 dependent on 1 st M1. Writing or use of $1 - P(X \le 7)$		
	NB Use of normal/normal approximation/ Poisson/uniform gets M0 M0 A0		
(c)	M1 $(\text{their(b)})^2$ or $(0.58)^2$ or $(0.5841)^2$ or $(0.584)^2$		
	A1ft —either awrt 0.34 or follow through their answer to part (b) must be to 2sf or better.		
	Note you will have to check this.		

Question Number	Scheme		Marks	
2.(a)	$X \sim B(25,0.5)$	may be implied by calculations in part a or b	M1	
	$P(X \le 7) = 0.0216$			
	$P(X \ge 18) = 0.0216$			
	$CR X \le 7; \ \cup \ X \ge 18$		A1,A1	(3)
(b)	P(rejecting H_0) = 0.0216 + 0.0216		M1	(3)
	= 0.0432	awrt 0.0432/0.0433	A1	(2)
			Total 5	(2)
	Notes			
	1^{st} A1 – also allow $X < 8$ or [0,7] or DO NOT allow CRs given as $P(X \le 7)$	ilities in the tables for values other than 7 or 18. $0 \le X \le 7$ or $0 \le X < 8$ oe e.g. $[0, 8)$ or a full list 7) or $7 - 0$ for the A mark. $[0, 18 \le X \le 25]$ or $[0, 17 \le X \le 25]$ or $[0, 17 \le X \le 25]$		
(b)	awrt 0.0432 If they add their critical regions' propability as their answer then it is e.g. $0.0216 + 0.0216 = 0.0432$ then e.g. $0.0216 + 0.0216 = 0.0432 < 0.0216$	0.05 - 0.0432 = 0.0068 gets M0 A0		

Question Number	Scheme		Marks
3(a)	n - large/high/big/ n > 50		B1
	p – small/close to $0 / p < 0.2$		B1 (2)
(b)	= 1 - 0.9799 P($(X \le 10) = 0.9574$ $(X \ge 11) = 0.0426$ $(X \ge 11)$	B1,B1 B1 M1 A1
	(0.0201 < 0.05) Reject H ₀ or Significant or 12 lies in the Critical reg There is evidence that the proportion of defective be		M1 dep. A1 ft (7) Total 9
(b)	Notes $1^{\text{st}} \text{ B1 for } H_0: p = 0.03$ $2^{\text{nd}} \text{ B1 for } H_1: p > 0.03$ SC If both hypotheses are correct but a different letter to p is used they get B1 B0 Also allow B1 B0 for $H_0: \lambda = 6$ and $H_1: \lambda > 6$ B1 writing or using Po(6) One tail $1^{\text{st}} \text{ M1 for writing or using } 1 - P(X \le 11) \text{ or giving } P(X \le 10) = 0.9574 \text{ or giving } P(X \ge 11)$ 0.0426. May be implied by correct CR or probability = 0.0201 $1^{\text{st}} \text{ A1 for } 0.0201 \text{ or } \text{ CR } X \ge 11/X > 10. \text{ NB } P(X \le 11) = 0.9799 \text{ on its own scores M1A1}$ 2nd M1 dependent on the $1^{\text{st}} \text{ M1 being awarded. For a correct statement based on the table bela allow non-contextual conflicting statements eg "significant" and "accept H_0". Ignore compariso 2^{\text{nd}} \text{ A1 ft for a correct contextualised statement. NB A correct contextual statement on its own small A1.} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		elow. Do not isons. n scores

 1^{st} M1 for writing or using 1 - P($X \le 11$) or giving P($X \ge 12$) = 0.0201 or giving P($X \le 11$) = 0.9799. May be implied by correct CR or probability = 0.0201

 1^{st} A1 for 0.0201 or CR $X \ge 12/X > 11$. **NB** P($X \le 11$) = 0.9799 on its own scores M1A1 2^{nd} M1 dependent on the 1^{st} M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept H₀". **Ignore comparisons**. 2^{nd} A1 ft for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.

	0.025	p < 0.025 or p > 0.975
2 nd M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR
2^{nd} A1	The proportion/number/amount/percentage	The proportion/number/amount/percentage
	<u>oe</u> of	oe of defective bolts has increased/is higher/oe
	defective bolts has not increased/is not	
	higher/oe	

Use of N(6,5.82) May get B1 B1 B0 M1 (must use 11.5)A0 M1dep A1 ft

Question Number	Scheme	Marks	
4(a)	Let <i>X</i> be the random variable the number of houses sold.		
	$X \sim Po(8)$	B1	
(i)	$P(X \le 3) - P(X \le 2) = 0.0424 - 0.0138$ or $\frac{e^{-8}8^3}{3!}$	M1	
	= 0.0286 awrt 0.0286	A1	
(ii)	$P(X > 5) = 1 - P(X \le 5)$ = 1 - 0.1912	M1	
	= 0.8088 awrt 0.809	A1 (5)	
(b)	Let <i>Y</i> be the random variable = the number of periods where more than 5 houses are sold		
	<i>Y</i> ∼ B(12,0.8088)	M1	
	$P(Y=9) = (0.8088)^{9} (1 - 0.8088)^{3} \frac{12!}{9!3!}$	M1	
	= 0.228 awrt 0.228	A1 (3)	
(c)	N(20,20)	M1A1	
	$P(X > 25) = 1 - P\left(Z \le \frac{25.5 - 20}{\sqrt{20}}\right)$ $= 1 - P\left(Z \le 1.23\right)$ $= 1 - 0.8907$ $= 0.1093 / 0.1094$ awrt 0.109	M1,M1,A1 A1 (6) Total 14	
(a)	Notes 1st B1 for writing or using Po(8) in either (i) or (ii)	1000114	
(i)	M1 writing or using $P(X \le 3) - P(X \le 2)$ or $\frac{e^{-8}8^3}{3!}$		
(ii)	M1 writing or using $1 - P(X \le 5)$ 3!		
(b)	M1 writing or attempting to use B(12,their (a(ii))) NB ft their a(ii) to at least 2sf $\frac{12!}{93!}$ (a(ii)) ⁹ (1- a(ii)) ³ allow ¹² C ₃ or ¹² C ₉ or 220 instead of $\frac{12!}{93!}$ NB ft their a(ii) to at		
(c)	least 1sf but an expression must be seen (No use of tables) 1 st M1 for writing or using a normal approximation 1 st A1 for correct mean and sd (may be given if correct in standardisation formula) 2 nd M1 Standardising using their mean and their sd and using [24.5, 25, 25.5, 26 or 26.5] and for finding correct area by doing 1 – P(Z≤ "their 1.23") NB if they have not written down a mean and sd then they need to be correct in the standardisation to gain this mark. 3 rd M1 for attempting a continuity correction (26± 0.5)		
	2^{nd} A1 for $\pm \frac{25.5 - 20}{\sqrt{20}}$ or $\pm \text{ awrt } 1.2 \text{ or better.}$	ı	
	SC using P(X< 26.5/25.5) – P(X<25.5/24.5) can get M1A1 M0M1A0A0		

Question Number	Scheme	Marks	
5(a)	$\int_0^k \frac{3}{32} x(k-x) = 1$ $\frac{3}{32} \left[\frac{kx^2}{2} - \frac{x^3}{3} \right]_0^k = 1$	M1 A1	
	$ \begin{array}{c c} 32 & 2 & 3 \\ & \frac{3k^3}{64} - \frac{3k^3}{96} = 1 \\ 3k^3 - 2k^3 = 64 \\ & k^3 = 64 \\ & k = 4 \end{array} $	M1 dep	
b	[E(X) =] 2	(4) B1 (1)	
С	$E(X^{2}) = \int_{0}^{4} \frac{3}{32} x^{3} (4 - x)$ $= \left[\frac{3x^{4}}{32} - \frac{3x^{5}}{160} \right]_{0}^{4}$ $= \left[\frac{3 \times 4^{4}}{32} - \frac{3 \times 4^{5}}{160} \right]$	M1	
	$= 4.8$ $Var(X) = 4.8 - 4$ $= 0.8$ $= 0.8$ $= 3x^{2} + x^{3} = 3x^{2} + x^{2} = 3x^{2} + x$	A1 M1 A1 (4)	
d	$\int_{1.5}^{2.5} \frac{3}{32} x(4-x) = \left[\frac{3x^2}{16} - \frac{x^3}{32} \right]_{1.5}^{2.5} \qquad \text{or} \qquad \int_{0}^{1.5} \frac{3}{32} x(4-x) = \left[\frac{3x^2}{16} - \frac{x^3}{32} \right]_{0}^{1.5}$ $= \frac{47}{128} = 0.3671875 \qquad \qquad = \frac{81}{256} = 0.31640625$ $1 - \frac{47}{128} = \frac{81}{128} \text{ awrt } 0.633$ $2 \times \frac{81}{256} = \frac{81}{128} \text{ awrt } 0.633$	M1 M1depA1	
	Notes	(3) Total 12	
(a)	1 st M1 for an attempt to multiply out bracket and for attempting to integrate $f(x)$. Both $x^n \rightarrow x^{n+1}$ 1 st A1 for correct integration. Ignore limits for these two marks. Need $\frac{3}{32} \left(\frac{kx^2}{2} - \frac{x^3}{3} \right)$ oe 2 nd M1 Dependent on the previous M mark being awarded. For correct use of correct limits and set equal to 1. No need to see 0 substituted in. For verifying they must have $\frac{3}{32} \left(\frac{4^3}{2} - \frac{4^3}{3} \right)$		
	2^{nd} A1 cso or for verifying $\frac{3}{32} \left(\frac{4^3}{2} - \frac{4^3}{3} \right) = 1$ oe eg $3(4)^3 - 2(4)^3 = 64$ and a correct comment "so $k = 2$ "	: 4"	
(c)	1 st M1 attempt to multiply out bracket and attempting $\int x^2 f(x)$ Limits not needed. Both $x^n \to x^{n+1}$		
(d)	2 nd M1 for their $E(X^2)$ – (their mean) ² 1 st M1 Multiply out brackets, attempting to integrate (both $x^n \rightarrow x^{n+1}$), with either limits (their(b) \pm 0.5) 0.5 and 0) Accept 2 sf for their limits. 2 nd M1dep on gaining 1 st M1. 1 – (using limits (their(b) \pm 0.5) or 2 × (using limits (their(b) $-$ 0.5 and	or (their (b) –	

Question Number	Scheme		Marks
6	Attempt to write down combinations	at least one seen	M1
	(1,1,1), $(1,1,2)$ any order $(1,2,2)$ any order, $(2,2,2)$	no extra combinations	A1
	Range 0 and 1	0 and 1 only	B1
	[P(range = 0) =] $(0.65)^3 + (0.35)^3$ = 0.3175 or $\frac{127}{400}$	either range	M1 A1cao
	[P(range = 1) =] $(0.35)^2(0.65) \times 3 + (0.65)^2(0.35) \times 3$ = 0.6825 or $\frac{273}{400}$		A1cao
			(6)
	Notes		Total 6
	First M1 may be implied by either $(0.65)^3$ or $(0.35)^3$ or $(0.65)^2$ First A1 may be implied by $(0.65)^3$ and $(0.35)^3$ and $(0.65)^2$ No need for x3 2^{nd} M1 $(p)^3 + (1-p)^3$ or $(1-p)^2(p) \times 3 + (p)^2(1-p) \times 3$ A1 for 0.3175 cao or exact equivalent e.g $\frac{254}{800}$ A1 for 0.6825 cao or exact equivalent e.g $\frac{546}{800}$ NB These probabilities do not need to be associated with the second content of	² (0.35) and (0.35) ² (0.65)	

Question Number	Scheme	Marks
7(a)	0.15 0.05 0.05 0.00	B1 B1 B1 B1dep 0.2,3,4,10
(b)	$ \left[\begin{array}{cc} 0 & x < 0 \end{array} \right] $	(4)
	$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^3}{135} & 0 \le x \le 3 \\ \frac{x}{5} - \frac{2}{5} & 3 < x < 4 \end{cases}$ $\begin{cases} \frac{x}{3} - \frac{x^2}{60} - \frac{2}{3} & 4 \le x \le 10 \\ \frac{x}{3} - \frac{x^2}{60} - \frac{2}{3} & x > 10 \end{cases}$	M1A1
	$F(x) = \begin{cases} \frac{x}{5} - \frac{2}{5} \\ x + x^2 + 2 \end{cases}$ 3 < x < 4	M1A1
	$\begin{bmatrix} \frac{x}{3} - \frac{x}{60} - \frac{2}{3} & 4 \le x \le 10 \\ 1 & x > 10 \end{bmatrix}$	M1A1
	$1^{\text{st}} \text{ M1 For } 0 \le x \le 3, F(x) = \int_0^x \frac{t^2}{45} dt$ $= \left[\frac{t^3}{135} \right]_0^x$ $2^{\text{nd}} \text{ M1 For } 3 < x < 4, F(x) = \int_3^x \frac{1}{5} dt + \frac{1}{5} \text{or } F(x) = \int_3^x \frac{1}{5} dx + C \text{ and uses } F(3) = \frac{1}{5}$ $= \left[\frac{t}{5} \right]_3^x + \frac{1}{5} \frac{1}{5} = \left[\frac{3}{5} \right] + C$ $3^{\text{rd}} \text{ M1 For } 4 \le x \le 10, F(x) = \int_4^x \frac{1}{3} - \frac{x}{30} dt + \frac{2}{5} \text{or } F(x) = \int_3^x \frac{1}{3} - \frac{x}{30} dx + C \text{ and uses}$ $F(4) = \frac{2}{5} \text{or } F(10) = 1$ $F(x) = \left[\frac{t}{3} - \frac{t^2}{60} \right]_4^x + \frac{2}{5} \frac{2}{5} = \frac{4}{3} - \frac{4^2}{60} + C \text{ or } 1 = \frac{10}{3} - \frac{10^2}{60} + C$	
	Top line of $F(x)$ ie 0 $x < 0$ Bottom line of $F(x)$ ie 1 $x > 10$	B1 B1 (8)
(c)	$F(8) = \frac{8}{3} - \frac{8^2}{60} - \frac{2}{3}$ $= \frac{14}{15} = 0.933$	M1 A1 cso (2) Total 14

Notes

(a)

1st B1 for a curve. It must start at (0, 0) and have the correct curvature.

2nd B1 for a horizontal line that joins the first section of the graph (not by a dotted line)

 3^{rd} B1 for a straight line with negative gradient that joins the horizontal line and stops on the positive x axis.

4th B1 dependent on first 3 marks being gained. Fully correct graph with labels 0.2, 3,4,10 in correct places

(b) For all the M marks, the attempt to integrate must have at least one $x^n \rightarrow x^{n+1}$ All A marks are for the correct expressions and ranges.

Do not penalise the use of \leq instead of < and \geq instead of >.

<u>**1**st **M1**</u> for attempt to integrate $\int_0^x \frac{t^2}{45} dt$ ignore limits

2nd M1

for attempt to integrate $\int_3^x \frac{1}{5} dt + \text{their F(3)}$ using correct limits.

or

for attempt to integrate $\int \frac{1}{5} dx + C$ and substituting in 3 and putting = to their F(3) or substituting in 4 and putting = to their F(4) from their $4 \le x \le 10$ line

3rd M1

for attempt to integrate $\int_4^x \frac{1}{3} - \frac{x}{30} dt$ + their F(4) using correct limits.

or

for attempt to integrate $\int \frac{1}{3} - \frac{x}{30} dt + C$ and substituting in 4 and putting = to their F(4) or substituting in 10 and putting = 1

(c) M1 substituting 8 into the 4th line of their cdf or F(3) + F(4) – F(3) + F(8) – F(4) or $1 - \int_8^{10} \frac{1}{3} - \frac{x}{30}$ (attempt to integrate needed) or use areas e.g $1 - \frac{1}{2} \times 2 \times \frac{1}{15}$ or $1 - \frac{1}{15}$

A1 14/15 awrt 0.933 from correct working.

NB If using F(3) + F(4) - F(3) + F(8) - F(4) then F(x) must be correct.

Question Number	Scheme			Marks	
8(a)	Let <i>X</i> be the random variable the number of customers asking for water.				
		_			
(i)	X ~B(10,0.6)		(10,0.4)		B1
	$P(X=6) = (0.6)^{6} (0.4)^{4} \frac{10!}{6!4!}$	P(<i>Y</i> =	$=4)=(0.4)^4(0.6)^6\frac{10!}{6!4!}$		M1
	= 0.2508	= 0.2	508	awrt 0.251	A1
(ii)	$X \sim B(10,0.6)$		<i>Y</i> ~B(10,0.4)		
()	P(X < 9) = 1 - (P(X = 10) + P(X = 10))		$P(X < 9) = 1 - P(Y \le 1)$		M1
	$= 1 - (0.6)^{10} - (0.6)^{9} (0.4)^{1}$	10!	1 0.0464		
	= 0.9536	9!!!	= 1 - 0.0464 = 0.9536	awrt 0.954	A1
					(5
(b)	$X \sim B(50,0.6)$ $Y \sim B(50,0.4)$				M1
	$P(X < n) \ge 0.9$ $P(Y > 50 - n) \ge 0.9$ $P(Y \le 50 - n) \le 0.1$ $50 - n \le 15$ $n \ge 35$ $n = 35$		(X < 34) = 0.8439 awrt 0.5 (X < 35) = 0.9045 awrt 0.5		M1 A1
	Notes				Total
(a)	B1 writing or using $B(10,0.6) / B($	10,0.4)	in either part(i) or (ii)		
(i)	M1 $(0.6)^6 (1-0.6)^4 \frac{10!}{6!4!}$ Allow $^{10}C_6$ oe				
	or writing or using $P(X \le 6) - P(X$		using B(10,0.6)		
	or $P(X \le 4)$ - $P(X \le 3)$ if using B(1) NB use of Poisson will gain M0A0				
(ii)	M1 writing or using $1 - (P(X = 10$		(X = 9)) if using B(10,0.6)		
	or				
	$1-P(Y \le 1)$ if using B(10,0.4) NB use of Poisson will gain M0A0	0			
(b)	1 st M1 for writing or using either I	B(50,0.			
	$2^{\text{nd}} \text{ M1} P(Y > 50 - n) \ge 0.9 \text{ or } P(0.904/0.905 \text{ or } 50 - n = 15 \text{ or } 50 - n)$				
	A1 cao 35. Do not accept $n \ge 35$ for			10 anow anier	
	SC use of normal.				
	M1 M0 A0 for use of N(30,12) lea	ding to	an answer of 35		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA033140 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

