Question Number	Scheme	Marks
1. (a) (b) (c)	Continuous uniform (Rectangular) $\mathrm{U}(-0.5,0.5)$ $\mathrm{P}($ error within 0.2 cm$)=2 \times 0.2=0.4$ $\mathrm{P}($ both within 2 cm$)=0.4^{2}=0.16$	B1 B1 (2) M1 A1 (2) M1 A1 (2) (6 marks)
2. (a) (b) (c)	$\begin{aligned} & X \sim \mathrm{Po}(7) \\ & \mathrm{P}(X \leq 2)=0.0296 \\ & \mathrm{P}(X \geq 13)=1-0.9370=0.0270 \end{aligned}$ Critical region is $(X \leq 2) \cup(X \geq 13)$ Significance level $=0.0296+0.0270=0.0566$ $x=5$ is not the critical region \Rightarrow insufficient evidence to reject H_{0}	B1 B1 M1 A1 A1 (5) B1 (1) M1 A1 (8 marks)
3. (a) (b) (c)	Weeds grow independently, singly, randomly and at a constant rate (weeds $/ \mathrm{m}^{2}$) Let X represent the number of weeds $/ \mathrm{m}^{2}$ $\begin{aligned} & X \sim \mathrm{Po}(0.7) \text {, so in } 4 \mathrm{~m}^{2}, \lambda=4 \times 0.7=2.8 \\ & \mathrm{P}(Y<3)=\mathrm{P}(Y=0)+\mathrm{P}(Y=1)+\mathrm{P}(Y=2) \\ & \quad=\mathrm{e}^{-2.8}\left(1+2.8+\frac{2.8^{2}}{2}\right) \\ & \quad=0.46945 \end{aligned}$ Let X represent the number of weeds per $100 \mathrm{~m}^{2}$ $\begin{aligned} & X \sim \operatorname{Po}(100 \times 0.7=70) \\ & \mathrm{P}(X>66) \end{aligned} \begin{aligned} & \approx \mathrm{P}(Y>66.5) \text { where } Y \sim \mathrm{~N}(70,70) \\ & \approx \mathrm{P}\left(Z>\frac{66.5-70}{\sqrt{70}}\right) \\ & \approx \mathrm{P}(Z>-0.41833 \ldots)=0.6628 \end{aligned}$	B1 B1 B1 M1 A1 A1 B1 M1 M1 A1 M1 A1 (12 marks)

Question Number	Scheme	Marks	
4. $\begin{array}{r}\text { (a) } \\ \text { (b) }\end{array}$	$\mathrm{P}(X>0.7)=1-\mathrm{F}(0.7)=0.4267$	M1 A1	(2)
	$\mathrm{f}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{~F}(x)=\frac{4}{3} \times 2 x-\frac{4 x^{2}}{3}$	M1	
	$=\frac{4 x}{3}\left(2-x^{2}\right) \text { for } 0 \leq x \leq 1$	A1	(2)
	$\mathrm{E}(X)=\int_{0}^{1} \frac{4}{3}\left(2 x^{2}-x^{4}\right) \mathrm{d} x=\left[\frac{4}{3}\left(\frac{2 x^{3}}{3}-\frac{x^{5}}{5}\right)\right]_{0}^{1}$	M1 A1	
	$=\frac{28}{45}=0.622$	A1	
	$\operatorname{Var}(X)=\int_{0}^{1} \frac{4}{3}\left(2 x^{3}-x^{5}\right) \mathrm{d} x-\left(\frac{28}{45}\right)^{2}$	M1	
	$=\left[\frac{4}{3}\left(\frac{2 x^{4}}{4}-\frac{x^{6}}{6}\right)\right]_{0}^{1}-\left(\frac{28}{45}\right)^{2}$	A1	
	$=\frac{116}{2025}=0.05728$	A1	(6)
	$f(x)=\frac{4}{3}\left(2-3 x^{2}\right)=0$	M1	
	$\Rightarrow \text { mode }=\sqrt{\frac{2}{3}}=0.816496$	A1	
	$\text { skewness }=\frac{\frac{28}{45}-\sqrt{\frac{2}{3}}}{\sqrt{\frac{116}{2025}}}=-0.81170$	M1 A1	(4)
			rks)

Question Number	Scheme	Marks
5. $\begin{array}{r}(a) \\ (b) \\ (c) \\ \\ (d) \\ \\ (e)\end{array}$	Let X represent the number of double yolks in a box of eggs	B1
	$\therefore X \sim \mathrm{~B}(12,0.05)$	B1
	$\mathrm{P}(X=1)=\mathrm{P}(X \leq 1)-\mathrm{P}(X \leq 0)=0.8816-0.5404=0.3412$	M1 A1 (3)
	$\mathrm{P}(X>3)=1-\mathrm{P}(X \leq 3)=1-0.9978=0.0022$	M1 A1 (2)
	$\mathrm{P}($ only 2$)=\mathrm{C}_{2}^{3}(0.3412)^{2}(0.6588){ }^{2}$	M1 A1
	$=0.230087$	A1 (3)
	Let X represent the number of double yolks in 10 dozen eggs $\therefore X \sim \mathrm{~B}(120,0.05) \Rightarrow X=\operatorname{Po}(6)$	B1
	$\mathrm{P}(X \geq 9)=1-\mathrm{P}(X \leq 8)=1-0.8472$	M1 A1
	$=0.1528$	A1
	Let X represent the weight of an egg $\therefore W \sim \mathrm{~N}\left(65,2.4{ }^{2}\right)$	M1
	$\mathrm{P}(X>68)=\mathrm{P}\left(Z>\frac{68-65}{2.4}\right)$	A1
	$=\mathrm{P}(\mathrm{Z}>1.25)$	A1
	$=0.1056$	A1 (3)
		(15 marks)

