Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WST02_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Notes} \\
\hline (a) \& \& \begin{tabular}{l}
for forming appropriate (in)equality using \(\mathrm{f}(0)\), or for using symmetry of pdf graph. Condone missing \(k\) \\
c.a.o. (must be strict inequalities) NB A correct answer seen is M1 A1
\end{tabular} \\
\hline (b)(i) \& B1 \& a curve in a \(U\) shape only between 0 and 3 with curve lower at 3 than at 0 . Must be above \(x\)-axis and it must not go beyond 0 or 3 For \(<0\) or \(>3\) may have patios or nothing \\
\hline (ii) \& B1 \& Allow 1/6 instead of \(k\) \\
\hline (c) \& \begin{tabular}{l}
M1 \\
A1 \\
dM1 \\
A1*
\end{tabular} \& \begin{tabular}{l}
Attempting to integrate \(\mathrm{f}(x)\), at least 1 term correct. \\
fully correct integration (Ignore limits here) \\
dep on previous M being given. For putting \(=1\) and for use of correct limits leading to an equation for \(k\). Need to see some substitution before \(6 k\) Condone missing \(0 k\) c.s.o.
\end{tabular} \\
\hline (d) \& \[
\begin{gathered}
\mathrm{M} 1 \\
\mathrm{dM} 1 \\
\mathrm{~A} 1 \\
\text { dM1 } \\
\text { dM1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l}
for realising need for \(\mathrm{E}(X)=\int x \times \mathrm{f}(x)\) oe Ignore limits. \\
Dependent on \(1^{\text {st }}\) M1 Attempting to integrate, at least 1 term correct. Condone missing \(k\) \\
fully correct Integration with \(k\) or \(\frac{1}{6}\) (Ignore limits here) \\
Dependent on \(2^{\text {nd }}\) M1 For correct use of limits, implied by a correct mean. Condone missing 0 \\
Dependent on \(3^{\text {rd }} \mathrm{M} 1\). For 2.1 - (their mean) \({ }^{2}\) implied by correct answer. dependent on all previous marks being awarded. Accept awrt 0.834 \\
NB A correct answer does not imply the method marks we need see integration
\end{tabular} \\
\hline (e) \& M1

A1 \& One of the 4 statements in the main MS or correct cdf line of $\frac{1}{6}\left(\frac{x^{3}}{3}-2 x^{2}+5 x\right)$ with $1-\mathrm{F}(2)$ or $\mathrm{F}(3)-\mathrm{F}(2)$ seen. Allow with k or $\frac{1}{6}$ Allow equivalent probability statement using < or \leqslant for $F(2)$ and $F(3)$. These are not implied by $1-\frac{7}{9}$ cso both 3 and 2 substituted separately and correctly eg minimum of $\frac{1}{6}\left[\frac{4}{3}\right]$ or $1-\frac{1}{6}\left(\frac{14}{3}\right)$ leading to $=\frac{2}{9}^{*}$

\hline (f) \& M1
A1

A1cso \& | Allow $\frac{1}{6}\left(\frac{x^{3}}{3}-2 x^{2}+5 x\right)=0.5$ oe Implied by a correct probability statement or the correct median being given. Allow statements in terms of k. Reference to skew is M0 P $X>1=\frac{4}{9}$ (0.44 or better) or (0.55 or 0.56 or better) or median $=0.8458 \ldots$ |
| :--- |
| (allow awrt 0.85) $\mathbf{N B}$ allow $\frac{1}{3} \int_{0}^{1} x^{2}-4 x+5[\mathrm{~d} x]$ or $\mathrm{F}(1)$ for $\mathrm{P}(X<1)$ stating median < 1 |
| NB $\int_{0}^{1} x^{2}-4 x+5[\mathrm{~d} x]$ or $\mathrm{P} X \leq 1$ for $\mathrm{P} X<1$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& Scheme \& Marks

\hline \multicolumn{2}{|c|}{7(a)} \& \& M1
dM1
M1
dM1

A1
A1
A1

\hline \multicolumn{2}{|c|}{(b)} \& $$
\begin{aligned}
& \mathrm{F}(m)=0.5 \\
& \mathrm{~F}(2.165)=0.493 \ldots \\
& \mathrm{~F}(2.175)=0.5001 \ldots \\
& \quad \Rightarrow \mathrm{~F}(2.165)<0.5<\mathrm{F}(2.175) \quad \therefore m=2.17(2 \mathrm{dp})
\end{aligned}
$$ \& M1

\hline \& \& Notes \& Total 9

\hline (a) \& M1
dM1

M1

dM1

A1
A1
A1 \& \multicolumn{2}{|l|}{for attempted integration of $1^{\text {st }}$ part (at least one $x^{n} \rightarrow x^{n+1}$) (dependent on $1^{\text {st }} \mathrm{M} 1$) for $\int \frac{3}{4}(x-1) \mathrm{d} x$ and use of $\mathrm{F}(1)=0$ or for $\int_{1}^{m} \frac{3}{4}(x-1) \mathrm{d} x$ with both limits substituted. Implied by correct function simplifying 2nd part $\left[\frac{3}{32}\left(x^{3}-8 x^{2}+16 x\right)\right]$ (3 terms at least 2 correct) oe condone missing 3/32 and integrating (at least one correct) or 1st stage of integration by parts correct (dependent on $3^{\text {rd }} \mathrm{M} 1$) $\int \frac{3}{32} x(x-4)^{2} \mathrm{~d} x$ and using $\mathrm{F}(4)=1$ or $\mathrm{F}(2)=\frac{3}{8}$ (need to see subst of 4 or 2) or $\int_{2}^{m} \frac{3}{32} x(x-4)^{2} \mathrm{~d} x+$ their $\mathrm{F}(2)$. Do not allow it written as $\mathrm{F}(2)$ rather than a value. For both these $\mathrm{F}(2)$ may be incorrect but the substitution of 2 into cdf part 1 must be seen. Implied by correct function. fully correct 1st part of $\mathrm{F}(x)$. fully correct 2nd part of $\mathrm{F}(x)$ (dependent on at least one M1) for $\mathrm{F}(x)$ defined for $x<1$ and $x>4$ allow "otherwise" for one NB Allow \leqslant for $<$ signs and vice versa and \geqslant for >}

\hline (b) \& M1

A1 \& For use of $\mathrm{F}(\mathrm{m})=0.5$ and using 2 appropriate bounds from $(2.165 \leqslant m \leqslant 2.1$ their $2^{\text {nd }}$ part of $\mathrm{F}(x)$ for $2 \leqslant x \leqslant 4$ or "their line for $2 \leqslant x \leqslant 4$ " -0.5 Or median $=2.17471 \ldots 4 \mathrm{dp}$ or better Appropriate reason for their method. eg $\mathrm{F}(2.165)<0.5<\mathrm{F}(2.175)$ or chang to conclusion that $m=2.17$ or if value of median found "therefore median \& | $\neq 2.17$) into |
| :--- |
| gn leading to 2 dp " |

\hline
\end{tabular}

