

Mark Scheme (Results)

January 2017

Pearson Edexcel International A-Level Mathematics

Statistics 2 (WST02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017 Publications Code WST02_01_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \star The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

January 2017 IAL WST02/01 Statistics 2 Mark Scheme

Question Number	Scheme	Marks
1.	$W \sim N(32, 16)$, $X \sim Bin(20, 0.45)$	
(a)	$\left\{ \mathbf{P}(W=36)\right\} = \underline{0}$	B1
		[1]
(b)	$\left\{ P(X=8) \right\} = P(X \leq 8) - P(X \leq 7) \underline{\text{or}}$	2.61
	$^{20}C_8(0.45)^8(1-0.45)^{12}$	M1
	= 0.1623003713 awrt <u>0.162</u>	A1
		[2]
(c)	${m = E(X) = 20(0.45) \triangleright} E(X) = 9$	B1
	$\sigma = \sqrt{20(0.45)(1 - 0.45)} \ \left\{ = 2.2248595 \right\}$	M1
	$\left\{ \text{prob} = \right\} P\left(9 - \sqrt{4.95} < X < 9 + \sqrt{4.95}\right) = P(X \le 11) - P(X \le 6)$	dM1
	$\{0.8692 - 0.1299\} = 0.7393$ awrt <u>0.739</u>	A1
		[4]
		7
(L -)	Notes $P(X \leq 9) = P(X \leq 7)$ (we choose here it is the 0.4142 = 0.2520)	
(b)	M1 for writing or using $P(X \le 8) - P(X \le 7)$ (may be implied by 0.4143 – 0.2520)	
	<u>or</u> for a correct expression ${}^{20}C_8^{}(0.45)^8(1 - 0.45)^{12}$	
(c)	B1 $E(X) = 9$ seen or implied	
	1 st M1 writing or using $\sigma = \sqrt{20(0.45)(1-0.45)}$	
	2nd M1 dependent upon 1 st M1 for correct use of $P(\mu - \sigma < X < \mu + \sigma) = P(X \le A) - P(X \le B)$ wi correct for their μ and σ	th A and B
	Special Case: $P(9 - 4.95 < X < 9 + 4.95) = P(X \le 13) - P(X \le 4)$ [=awrt 0.960] scores B1M0M14	A 0

Question Number	Scheme	Marks
2. (a)	$\left\{ \mathrm{E}(X) = 8 \Longrightarrow \right\} \ \frac{\beta + \alpha}{2} = 8$	B1
		[1]
(b)	$\left\{ P(X \leqslant 13) = 0.7 \Rightarrow \right\} \left\{ \text{or} \Rightarrow P(8 \leqslant X \leqslant 13) = 0.2 \right\}$	
	$\frac{13-a}{b-a} = \frac{7}{10} \underline{\text{or}} \frac{\beta-13}{\beta-\alpha} = \frac{3}{10} \underline{\text{or}} \frac{13-8}{\beta-\alpha} = \frac{1}{5} \underline{\text{or}} \frac{13-8}{\beta-13} = \frac{0.2}{0.3} \implies \alpha = \text{ or } \beta = \frac{1}{2} \underline{\text{or}} \beta = \frac{1}{2} \text$	M1
	$\beta + \alpha = 16$ Either $a = -4.5$ or $b = 20.5$	A1
	$ \begin{array}{c} \beta + \alpha = 16 \\ 7\beta + 3\alpha = 130 \end{array} \right\} \beta = 20.5, \ \alpha = -4.5 \qquad \qquad$	A1
		[3]
(c)	$\left\{ \operatorname{Var}(X) = \frac{(20.5 - 4.5)^2}{12} \right\} \qquad \qquad \frac{625}{12} \text{ or awrt } \underline{52.1}$	B1 ft
		[1]
(d)	$\left\{ P(5 \leqslant X \leqslant 35) \right\} = \frac{20.5 - 5}{20.5 - 4.5} \left\{ = \frac{15.5}{25} \right\} = \frac{31}{50} \qquad \qquad \frac{31}{50} \text{ or } \underline{0.62}$	M1 A1
		[2] 7
	Notes	
(a)	B1 for $\frac{\beta + \alpha}{2} = 8$ o.e.	
(b)	M1 for writing down a second equation in ∂ and/or b and attempting to solve leading to a value	e of a or h
(0)	1^{st} A1 one correct value	
	2 nd A1 both correct values	
	(Correct answer only scores M1A1A1).	
(c)	B1ft allow follow through on their $\frac{(b-a)^2}{12}$	
	12	
(d)	M1 for finding a probability in the form $\frac{a}{b}$ with $a = (\text{their } b) - 5$ and $b = (\text{their } b) - (\text{their } a)$	
	or for $1 - \frac{5 - \text{their } \alpha}{\text{their } \beta - \text{their } \alpha}$	

3. Let $Y =$ the number of reported first aid incidents (a) λ /mean is large (greater than 10) λ is large B1 (For a 1 week period) $Y \sim Po(3.5)$ $P(Y = 3) = 0.2158$ and $P(Y = 4) = 0.1888$ or states that 3 is the largest integer less than λ B1 $\left\{As P(Y = 3) > P(Y = 4), \right\}$ mode = 3 (c) $\left\{For a 2 \text{ week period}\right\} X \sim Po(7)$ Po(7) B1 $\left\{P(X > 5)\right\} = 1 - P(X \leqslant 5) \text{ or } 1 - 0.3007$ = 0.6993 (d) $\left\{For a 1 \text{ week period}\right\} Y \sim Po(3.5)$ $\frac{P(Y = 4) \cdot P(Y = 2)}{P(X = 6)} = \frac{\left(\frac{e^{-35}(3.5)^2}{4!}\right)\left(\frac{e^{-35}(3.5)^2}{2!}\right)}{\left(\frac{e^{-7}(7)^6}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007}$ M1 (cumerator M1 A1) $= \frac{15}{64} \text{ or } 0.234375$ $\frac{15}{64} \text{ or } avert 0.234}{4!}$ A1 (e) $\left\{For a 40 \text{ week period}\right\} Y \sim Po(140)$ $\left\{Approximation\right\} Y \sim Po(140)$ $\left\{Approximation\right\} Y \sim N(140, 140)$ N(140, 140) M1 A1 $= P\left(Z > \frac{119.5 - 140}{\sqrt{140}}\right)$ $= P\left(Z > -1.732566\right)$ = 0.9582 $awrt 0.9582}$ A1	Question Number	Scheme	Marks
(a) 2/mean is large (greater than 10) λ is large B1 (b) For a 1 week period) $Y \sim Po(3.5)$ P($Y = 3$) = 0.2158 and P($Y = 4$) = 0.1888 or states that 3 is the largest integer less than λ B1 {As P($Y = 3$) = 0.2158 and P($Y = 4$) = 0.1888 or states that 3 is the largest integer less than λ B1 (c) For a 2 week period) $X \sim Po(7)$ Po(7) B1 [$P(X > 5)$] = 1 = P($X \le 5$) or 1 = 0.3007 M1 = 0.6993 avrt 0.6099 A1 (d) (For a 1 week period) $Y \sim Po(3.5)$ P($Y = 4$) $P(Y = 2)$ P($X = 6$) = $\left[\frac{e^{-3}(3.5)^2}{41}\right] (e^{-3}(3.5)^2)$ or $\frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007}$ M1 A1 = $\frac{15}{64}$ or 0.234375 $\frac{15}{64}$ or avrt 0.234 A1 (e) (For a 40 week period) $Y \sim Po(140)$ (Approximation) $Y \sim N(140, 140)$ N(140, 140) M1 A1 = P($Z > 1.19.5 - 140$) A1 = $P(Z > 1.732566)$ A1 = 0.9582 A1 = 0.958		Let $Y =$ the number of reported first aid incidents	
(b) [For a 1 week period] $Y \sim Po(3.5)$ $P(Y = 3) = 0.2158$ and $P(Y = 4) = 0.1888$ or states that 3 is the largest integer less than λ B1 [As $P(Y = 3) = 0.2158$ and $P(Y = 4) = 0.1888$ or states that 3 is the largest integer less than λ B1 [As $P(Y = 3) > P(Y = 4)$, $P(Y = 4)$, $P(0 = 3$ $P(X = 5) = 1 - P(X \le 5)$ or $1 - 0.3007$ P(X = 6) P(X = 10.5366) P(X = 6) P(X = 7.532566) P(X = 10.53266) P(X = 10.5366) P(X = 1		******	B1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			[1]
(c) $\frac{\left\{As P(Y-3) > P(Y-4), \right\} \mod e = 3}{(For a 2 week period) X - Po(7)} B1$ $\frac{P(X > 5) = 1 - P(X \le 5) \text{ or } 1 - 0.3007 \qquad M1$ $= 0.6993 \qquad awrt 0.6993 \qquad awrt 0.699 \text{ Al}$ (d) $\frac{P(Y-4) \cdot P(Y-2)}{P(X-6)} = \frac{\left(\frac{e^{-15}(3.5)^2}{4!}\right)\left(\frac{e^{-15}(3.5)^2}{2!}\right)}{\left(\frac{e^{-15}(3.5)^2}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007} M1 \text{ and } 1 \text{ Al}$ (e) $\frac{F(Y-4) \cdot P(Y-2)}{P(X-6)} = \frac{\left(\frac{e^{-15}(3.5)^2}{4!}\right)\left(\frac{e^{-15}(3.5)^2}{2!}\right)}{\left(\frac{e^{-1}(7)^6}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007} M1 \text{ Al}$ (e) $\frac{F(Y-4) \cdot P(Y-2)}{P(X-6)} = \frac{\left(\frac{e^{-15}(3.5)^2}{4!}\right)\left(\frac{e^{-15}(3.5)^2}{2!}\right)}{\left(\frac{e^{-1}(7)^6}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007} M1 \text{ Al}$ (e) $\frac{F(Y-4) \cdot P(Y-2)}{P(X-6)} = \frac{\left(\frac{e^{-15}(3.5)^2}{4!}\right)\left(\frac{e^{-15}(3.5)^2}{2!}\right)}{\left(\frac{e^{-15}(1.5)^2}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007} M1 \text{ Al}$ (e) $\frac{F(Y-4) \cdot P(Y-2)}{P(X-6)} = \frac{\left(\frac{e^{-15}(3.5)^2}{4!}\right)\left(\frac{e^{-15}(3.5)^2}{2!}\right)}{\left(\frac{e^{-15}(1.5)^2}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007} M1 \text{ Al}$ (e) $\frac{F(Y-4) \cdot P(Y-2)}{P(X-6)} = \frac{\left(\frac{e^{-15}(3.5)^2}{2!}\right)\left(\frac{e^{-15}(3.5)^2}{2!}\right)}{\left(\frac{e^{-15}(1.5)^2}{6!}\right)} \text{ or } \frac{1155}{6!} \text{ or } awrt 0.234 \text{ Al}$ (e) $\frac{F(Y-4) \cdot P(Y-2)}{\sqrt{140}} = \frac{115}{2!} \text{ or } $	(b)		
(c) $\frac{ \{For a 2 week period\} X \sim Po(7) Po(7) B }{\{P(X > 5)\}^{2} = 1 - P(X \leq 5) or 1 - 0.3007 M } = 0.6993 avrt 0.234 Avrt 0.244 avrt 0.244 avrt 0.234 avrt 0.234 avrt 0.234375 bvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv$			B1
(c) [For a 2 week period] $X \sim Po(7)$ Po(7) B1 $[P(X > 5)] = 1 - P(X \le 5)$ or $1 - 0.3007$ M1 $= 0.6993$ $awrt 0.699$ A1 (d) [For a 1 week period] $Y \sim Po(3.5)$ Image: the second of		As P(Y = 3) > P(Y = 4), mode = 3 <u>3</u>	B1
$ \left\{ \begin{array}{l} \left\{ P(X > 5) \right\} = 1 - P(X \le 5) \text{ or } 1 - 0.3007 \\ = 0.6993 \\ \text{awrt } 0.6993 \\ \text{awrt } 0.699 \\ \text{A1} \end{array} \right. \\ \left\{ \begin{array}{l} \left\{ \text{For a 1 week period} \right\} Y - P0(3.5) \\ \hline P(Y = 4) + P(Y = 2) \\ P(X = 6) \\ \end{array} \right\} = \left\{ \begin{array}{l} \left(\frac{e^{-3}(3.5)^4}{4!} \right) \left(\frac{e^{-1}(3.5)^2}{2!} \right) \\ \frac{e^{-1}(2.5)^4}{6!} \\ \end{array} \right\} \text{ or } \left(\frac{0.7254 - 0.5366(0.3208 - 0.1359)}{0.4497 - 0.3007} \right) \\ \text{M1 (numerator M1 A1)} \\ \hline \\ \begin{array}{l} = \frac{15}{64} \text{ or } 0.234375 \\ \end{array} \right\} \frac{15}{64} \text{ or awrt } 0.234 \\ \text{A1} \\ \end{array} \\ \left(\begin{array}{c} \text{(e)} \end{array} \right) \left(\begin{array}{c} \text{(For a 40 week period)} & Y \sim Po(140) \\ \text{(Approximation)} & Y \sim N(140, 140) \\ \end{array} \right) \\ \hline \\ \begin{array}{c} \text{(A1)} \end{array} \right) \frac{15}{64} \text{ or awrt } 0.234 \\ \text{(A2)} \\ \text{(A2)} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 5))} \\ \text{(A2)} \end{array} \right) \frac{1155 - 140}{\sqrt{140}} \\ \end{array} \\ \hline \\ \begin{array}{c} \text{(P(X = 6))} \\ \text{(A2)} \end{array} \\ \hline \\ \begin{array}{c} \text{(P(X = 6))} \\ \text{(A2)} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(A2)} \end{array} \right) \frac{1100}{\sqrt{140}} \\ \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(A1)} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(A2)} \end{array} \right) \frac{100}{\sqrt{140}} \\ \end{array} \\ \hline \\ \begin{array}{c} \text{(P(X = 6))} \\ \text{(A1)} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(A1)} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(A1)} \end{array} \right) \frac{100}{\sqrt{140}} \\ \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(P(X = 6))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(P(X = 6))} \end{array} \right) \frac{100}{\sqrt{140}} \\ \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(P(X = 6))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 6))} \\ \text{(P(X = 6))} \end{array} \right) \frac{100}{\sqrt{140}} \\ \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \right) \frac{100}{\sqrt{140}} \\ \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \ \ \right) \\ \left(\begin{array}{c} \text{(P(X = 1))} \\ \text{(P(X = 1))} \end{array} \\ \\ $			[2]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(c)	{For a 2 week period} $X \sim Po(7)$ Po(7)	B1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\{P(X > 5)\} = 1 - P(X \le 5) \text{ or } 1 - 0.3007$	M1
(d) $\frac{\left[\text{For a 1 week period}\right] Y \sim \text{Po}(3.5)}{\left[\frac{P(Y=4) \cdot P(Y=2)}{P(X-6)}\right]} = \frac{\left[\frac{e^{-35}(3.5)^2}{4!}\right]\left(\frac{e^{-25}(3.5)^2}{2!}\right)}{\left[\frac{e^{-7}(7)^5}{6!}\right]} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007} \qquad \text{M1 A 1}} \\ = \frac{15}{64} \text{ or } 0.234375 \qquad \qquad \frac{15}{64} \text{ or awrt } 0.234}{14} \text{ A1} \\ = \frac{15}{64} \text{ or } 0.234375 \qquad \qquad \frac{15}{64} \text{ or awrt } 0.234}{14} \text{ A1} \\ = P\left[Z > \frac{119.5 - 140}{\sqrt{140}}\right] \qquad \qquad \qquad \text{M1 A 1} \\ = P\left[Z > \frac{119.5 - 140}{\sqrt{140}}\right] \qquad \qquad \qquad \text{M1 A 1} \\ = 0.9582 \qquad \qquad \text{A1} \\ = 0.9582 \qquad \qquad \text{A1} \\ = \frac{16}{14} \text{ or } 0.2166 \text{ and } P(Y=4) = \text{awrt } 0.189 \text{ or states that 3 is the largest integer less than 1 = 3.5} \\ 2^{14} \text{ B1 } P(Y=3) = \text{awrt } 0.216 \text{ and } P(Y=4) = \text{awrt } 0.189 \text{ or states that 3 is the largest integer less than 1 = 3.5} \\ 2^{14} \text{ B1 } \text{ orde } = 3 \text{ [Not dependent on 1^{16} B1]} \\ \text{B1 Po}(Y=4) \times P(Y=2) \text{ using Po}(3.5) \text{ (may be implied by 1 - 0.3007)} \\ \text{(d) } 1^{14} \text{ M1 for } P(Y=4) \times P(Y=2) \text{ using Po}(3.5) \text{ (may be implied by awrt } 0.189 \times \text{awrt } 0.185 \text{ or awrt } 0.0349 \text{ 2^{14} A1} \text{ for proven rungride} P(X=4) \times P(X=2) \text{ for m Po}(7) \\ \text{ and numerator } P(W=4) \times P(Y=2) \text{ transpondent on } P(X=6) \text{ from Po}(7) \\ \text{ and numerator } P(W=4) \times P(W=2) \text{ for m} W-Po(\text{ang } \lambda) \\ 1^{14} \text{ A1 fully correct numerical expression} \\ 2^{14} \text{ A1 introp or using a normal approximation} \\ 1^{14} \text{ A1 introp or using a normal approximation} \\ 1^{14} \text{ A1 introp or using a normal approximation} \\ 1^{14} \text{ A1 introp or using a normal approximation} \\ 1^{16} \text{ M1 standardising using their mean and their sd on either [119.5 \text{ or } 120 \text{ or } 120.5] \\ \end{array}$		0. 500.0	A1
(d) [For a 1 week period] $Y \sim Po(3.5)$ $\frac{P(Y = 4) \cap P(Y = 2)}{P(X = 6)} = \frac{\left(\frac{e^{-35}(3.5)^4}{4!}\right)\left(\frac{e^{-35}(3.5)^2}{2!}\right)}{\left(\frac{e^{-7}(7)^6}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007} \text{ MI A1}$ $= \frac{15}{64} \text{ or } 0.234375 \qquad \frac{15}{64} \text{ or awrt } 0.234 \text{ A1}$ $= \frac{15}{64} \text{ or } 0.234375 \qquad \frac{15}{64} \text{ or awrt } 0.234 \text{ A1}$ (e) [For a 40 week period] $Y \sim Po(140)$ (Approximation] $Y \sim N(140, 140)$ M(140, 140) M(140, 140) M(140, 140) M(140, 140) M(140, 140) M(141, 140) M(140, 140) M(140) M(140			[3]
(e) $\begin{bmatrix} -\frac{15}{64} \text{ or } 0.234375 & \frac{15}{64} \text{ or } awrt 0.234 \\ -\frac{15}{64} \text{ or } awrt 0.140 \\ -\frac{16}{64} \text{ or } awrt 0.258 \\ -\frac{16}{64} \text{ or } awrt 0.234 \\ -\frac{16}{64} \text{ or } awrt 0.236 \\ -\frac{16}{64} \text{ or } awrt 0.236 \\ -\frac{16}{64} \text{ or } awrt 0$	(d)	{For a 1 week period} $Y \sim Po(3.5)$	
(c) $\frac{\{\text{For a } 40 \text{ week period}\} Y \sim \text{Po}(140)}{\{\text{Approximation}\} Y \sim \text{N}(140, 140)} \text{N}(140, 140) \text{M1 A1}} = P\left(Z > \frac{119.5 - 140}{\sqrt{140}}\right) \text{M1 M1}} = P\left(Z > -1.732566\right) \text{A1}} = P\left(Z > -1.732566\right) \text{A1}} = 0.9582 \text{awrt } 0.9582 \text{A1}} = 0.9582 \text{A1} = 0.9582 \text{A1} = 0.9582 \text{A1} = 0.9582 \text{A1} =$	(u)	$\frac{P(Y=4) \hat{P}(Y=2)}{P(X=6)} = \frac{\left(\frac{e^{-3.5}(3.5)^4}{4!}\right) \left(\frac{e^{-3.5}(3.5)^2}{2!}\right)}{\left(\frac{e^{-7}(7)^6}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007}$	M1(numerator) M1 A1
(e) $\begin{cases} \text{For a 40 week period} Y \sim \text{Po}(140) \\ \text{(Approximation)} Y \sim \text{N}(140, 140) \\ \text{N}(140, 140) \\ \text{M1 M1} \end{cases}$ $= P\left(Z > \frac{119.5 - 140}{\sqrt{140}}\right) \\ = P\left(Z > -1.732566\right) \\ \text{A1} \end{cases}$ $= 0.9582 \\ \text{awrt } 0.9582 \\ \text{A1} \end{aligned}$ $= 0.9582 \\ \text{awrt } 0.958 \\ \text{A1} \end{aligned}$ $= 0.9582 \\ \text{A2} \end{aligned}$ $= 0.9582 \\ \text{A3} \end{aligned}$ $= 0.9582 \\ \text{A1} \end{aligned}$ $= 0.9582 \\ \text{A2} \end{aligned}$ $= 0.9582 \\ \text{A3} \end{aligned}$ $= 0.9582 \\ \text{A4} \end{aligned}$ $= 0.9582 \\ \text{A5} \end{aligned}$ $= 0.9582 \\ \text{A5} \end{aligned}$ $= 0.9582 \\ \text{A5} \end{aligned}$ $= 0.9582 \\ \text{A1} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A1} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A1} \end{aligned}$ $= 0.252 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A1} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A1} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A2} \end{aligned}$ $= 0.1682 \\ \text{A3} \end{aligned}$ $= 0.1682 \\ \text{A4} \end{aligned}$ $= 0.1682 \\ $		$= \frac{15}{64} \text{ or } 0.234375 \qquad \qquad \frac{15}{64} \text{ or awrt } \underline{0.234}$	A1
{Approximation} $Y \sim N(140, 140)$ N(140, 140)M1 A1 $= P\left(Z > \frac{119.5 - 140}{\sqrt{140}}\right)$ M1 M1 $= P\left(Z > -1.732566\right)$ A1 $= 0.9582$ awrt 0.958awrt 0.958A1 $= 0.9582$ awrt 0.958(b)1st B1 P(Y = 3) = awrt 0.216 and P(Y = 4) = awrt 0.189 or states that 3 is the largest integer less than $/ = 3.5$ 2^{nd} B1 mode = 3 [Not dependent on 1st B1](c)B1 mode = 3 [Not dependent on 1st B1]B1 Po(7) seen or impliedM1 writing or using 1 - P(X ≤ 5) (may be implied by 1 - 0.3007)(d)1st M1 for P(Y = 4) × P(Y = 2) using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or awrt 0.0349 2^{nd} M1 correct use of conditional probability with denominator P(X = 6) from Po(7) and numerator P(W = 4) × P(W = 2) from W-Po(any λ) 1^{st} A1 fully correct numerical expression 2^{nd} A1 awrt 0.234(e)1^{st} M1 for writing or using a normal approximation 1^{st} A1 (140,140) (correct mean and variance which may be seen in standardisation) 2^{nd} M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5]			[4]
$= P\left(Z > \frac{119.5 - 140}{\sqrt{140}}\right)$ $= P\left(Z > -1.732566\right)$ $= 0.9582$ $= awrt 0.9582$ $A1$ $= 0.9582$ $awrt 0.9582$ $A1$ $= 0.9582$ $awrt 0.216 and P(Y = 4) = awrt 0.189 or states that 3 is the largest integer less than / = 3.5$ $2^{nd} B1 \mod e = 3 [Not dependent on 1^{st} B1]$ B1 Po(7) seen or implied M1 writing or using 1 - P(X \le 5) (may be implied by 1 - 0.3007) (d) 1 st M1 for P(Y = 4) × P(Y = 2) using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or awrt 0.0349, 2 nd M1 correct use of conditional probability with denominator P(X = 6) from Po(7) and numerator P(W = 4) × P(W = 2) from W-Po(any λ) 1 st A1 fully correct numerical expression 2 nd A1 awrt 0.234 (e) 1 st M1 for writing or using a normal approximation 1 st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2 nd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5]	(e)	{For a 40 week period} $Y \sim Po(140)$	
= P(Z > -1.732566) $= 0.9582$ awrt 0.9582 A1		{Approximation} $Y \sim N(140, 140)$ N(140, 140)	M1 A1
= P(Z > -1.732566) $= 0.9582$ awrt 0.9582 A1		$= P\left(Z > \frac{119.5 - 140}{\sqrt{140}}\right)$	M1 M1
Image: a grad box of the equation of the equa			Δ1
NotesNotes(b)1st B1 $P(Y = 3) = awrt 0.216$ and $P(Y = 4) = awrt 0.189$ or states that 3 is the largest integer less than $/ = 3.5$ 2^{nd} B1 mode = 3 [Not dependent on 1st B1] B1 Po(7) seen or implied M1 writing or using $1 - P(X \le 5)$ (may be implied by $1 - 0.3007$)(d)1st M1 for $P(Y = 4) \times P(Y = 2)$ using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or awrt 0.0349 2^{nd} M1 correct use of conditional probability with denominator $P(X = 6)$ from Po(7) and numerator $P(W = 4) \times P(W = 2)$ from W -Po(any λ)1st A1 fully correct numerical expression 2^{nd} A1 awrt 0.234(e)1st M1 for writing or using a normal approximation 1^{st} A1 (140,140) (correct mean and variance which may be seen in standardisation) 2^{nd} M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5]			
Notes(b)1st B1 $P(Y = 3) = awrt 0.216$ and $P(Y = 4) = awrt 0.189$ or states that 3 is the largest integer less than $l = 3.5$ 2^{nd} B1mode = 3 [Not dependent on 1st B1] B1Po(7) seen or implied M1 writing or using $1 - P(X \le 5)$ (may be implied by $1 - 0.3007$)(d)1st M1for $P(Y = 4) \times P(Y = 2)$ using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or awrt 0.0349) 2^{nd} M1 correct use of conditional probability with denominator $P(X = 6)$ from Po(7) and numerator $P(W = 4) \times P(W = 2)$ from $W \sim Po(any \lambda)$ 1st A1fully correct numerical expression 2^{nd} A1 awrt 0.234(e)1st M1for writing or using a normal approximation 1^{st} A1 (140,140) (correct mean and variance which may be seen in standardisation) 2^{nd} M1 for attempting to use the continuity correction (120 ± 0.5) 3^{rd} M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5]		awit <u>0.938</u>	[6]
 Notes (b) 1st B1 P(Y = 3) = awrt 0.216 and P(Y = 4) = awrt 0.189 or states that 3 is the largest integer less than / = 3.5 2nd B1 mode = 3 [Not dependent on 1st B1] (c) B1 Po(7) seen or implied M1 writing or using 1 – P(X ≤ 5) (may be implied by 1 – 0.3007) (d) 1st M1 for P(Y = 4) × P(Y = 2) using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or awrt 0.0349. 2nd M1 correct use of conditional probability with denominator P(X = 6) from Po(7) and numerator P(W = 4) × P(W = 2) from W~Po(any λ) 1st A1 fully correct numerical expression 2nd A1 awrt 0.234 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 			16
 than / = 3.5 2nd B1 mode = 3 [Not dependent on 1st B1] B1 Po(7) seen or implied M1 writing or using 1 – P(X ≤ 5) (may be implied by 1 – 0.3007) (d) 1st M1 for P(Y = 4) × P(Y = 2) using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or awrt 0.0349, 2nd M1 correct use of conditional probability with denominator P(X = 6) from Po(7) and numerator P(W = 4) × P(W = 2) from W~Po(any λ) 1st A1 fully correct numerical expression 2nd A1 awrt 0.234 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 		Notes	
 (c) 2nd B1 mode = 3 [Not dependent on 1st B1] B1 Po(7) seen or implied M1 writing or using 1 – P(X ≤ 5) (may be implied by 1 – 0.3007) (d) 1st M1 for P(Y = 4) × P(Y = 2) using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or awrt 0.0349) 2nd M1 correct use of conditional probability with denominator P(X = 6) from Po(7) and numerator P(W = 4) × P(W = 2) from W~Po(any λ) 1st A1 fully correct numerical expression 2nd A1 awrt 0.234 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 	(b)	1 st B1 $P(Y = 3) = awrt 0.216$ and $P(Y = 4) = awrt 0.189$ or states that 3 is the largest integer	less
 2nd M1 correct use of conditional probability with denominator P(X = 6) from Po(7) and numerator P(W = 4) × P(W = 2) from W~Po(any λ) 1st A1 fully correct numerical expression 2nd A1 awrt 0.234 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 	(c)	than $/ = 3.5$ $2^{nd} B1 \mod = 3$ [Not dependent on $1^{st} B1$] $B1 \mod Po(7)$ seen or implied	
 2nd M1 correct use of conditional probability with denominator P(X = 6) from Po(7) and numerator P(W = 4) × P(W = 2) from W~Po(any λ) 1st A1 fully correct numerical expression 2nd A1 awrt 0.234 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 	(d)	1st M1 for $P(Y = 4) \times P(Y = 2)$ using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or	awrt 0.0349)
 and numerator P(W = 4) × P(W = 2) from W~Po(any λ) 1st A1 fully correct numerical expression 2nd A1 awrt 0.234 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 			,
 1st A1 fully correct numerical expression 2nd A1 awrt 0.234 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120±0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 			
 (e) 1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 			
 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120±0.5) 3rd M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5] 			
3^{rd} M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5]	(e)	1 st A1 (140,140) (correct mean and variance which may be seen in standardisation)	
√140			
3rd A1 awrt 0.958			

Question Number	Scheme	Marks
4. (a)	$\left\{ E(X) = \right\} \int_{0}^{2} x \frac{3}{64} x^{2} (4-x) dx$	M1
	$= \frac{3}{64} \left[x^4 - \frac{x^5}{5} \right]_0^4$	A1
	= 2.4	A1
	So, mean number of hours is 2400	A1ft
(b)	$\left\{ E(X^2) = \right\} \int_0^2 x^2 \frac{3}{64} x^2 (4-x) dx$	[4] M1
	$= \frac{3}{64} \left[\frac{4x^5}{5} - \frac{x^6}{6} \right]_0^4 \{= 6.4\}$	A1
	$\sigma_x = \sqrt{6.4 - (2.4)^2} = 0.8$ <u>0.8</u>	dM1 A1 [4]
(c)	Some components may last longer than 4000 hours/ X could be greater than 4	B1
	Eg.	[1]
(d)	$ \begin{cases} f(x) \\ f(x) \\ \hline \\ 0 \\ \hline 0 \\$	B1
		[1]
	Notes	10
(a)	M1 using $\int xf(x)dx$ and attempting to integrate (At least one $x^n \to x^{n+1}$) Ignore limits. 1 st A1 correct integration. Ignore limits. 2 nd A1 2.4 o.e. (may be implied by a correct answer) 3 rd A1ft dependent on the M mark for multiplying their E(X) by 1000 (allow 2.4 thousand)	
(b)	1 st M1 using $\grave{0} x^2 f(x) dx$ and attempting to integrate (At least one $x^n \to x^{n+1}$) Ignore limits. 1 st A1 correct integration. Ignore limits.	
	2 nd M1 dependent on 1 st M1 for use of $\sqrt{(E(X^2))^2 - (E(X))^2}$ 2 nd A1 0.8 [Allow this mark to be scored for a standard deviation of 800 hours]	
(c)	B1 for an appropriate comment that refers to 4000 hours/ $X > 4$	

Question Number	Scheme	Marks	
5.	$X =$ Number of defects, $Y =$ Number of pieces of 15 m^2 containing at most 7 defects		
(a)	$X \sim Po(6) \text{ per } 15 \text{ m}^2$	M1	
~ /	${p =} P(X \leq 7) = 0.7440$	A1	
	$Y \sim B(12, 0.7440) \text{ per } 15 \text{ m}^2$	M1	
	$\left\{ P(Y=6) = \right\}^{12} C_6(0.7440)^6 (0.2560)^6$	M1	
	= 0.04411125 awrt 0.044	A1	
	awit <u>0.011</u>	[5	
(b)(i)	$H_0: \lambda = 0.4, H_1: \lambda \neq 0.4$ or $H_0: \lambda = 2, H_1: \lambda \neq 2$ or $H_0: \lambda = 10, H_1: \lambda \neq 10$	B1	
(ii)	$\{X = \}$ the <u>number/amount</u> of <u>defects</u> in a <u>25 m²</u> piece of cloth	B1	
(iii)	The set of/range of values for the number of defects observed in a 25 m ² piece of cloth that would lead you to reject H_0 .	B1	
	would lead you to reject H ₀ .	[3	
(c)	$X \sim Po(10) \text{ per } 25 \text{ m}^2$	B1	
	$P(X \leq 3) = 0.0103$		
	$P(X \leq 4) = 0.0293$	N/1	
	$P(X \le 16) = 0.9730$ or $P(X \ge 17) = 0.0270$	M1	
	$P(X \le 17) = 0.9857$ or $P(X \ge 18) = 0.0143$		
	CR: $X \leq 3$ or $X \geq 18$ o.e.	A1A1	
		[4	
(d)	{Actual sig. level =} $0.0103 + 0.0143$	M1	
	$= 0.0246 \text{ or } 2.46\% \qquad \text{awrt } 0.0246 \text{ or } 2.46\%$	A1	
		[2	
		1	
(a)	Notes 1 st M1 writing or using Po(6)		
(a)	1^{st} A1 awrt 0.744 seen or implied		
	2nd M1 writing or using $Y \sim B(12, their p)$		
	3rd M1 use of P(Y=6) from B(12, <i>their p</i>) i.e. ${}^{12}C_6("p")^6(1-"p")^6$		
(b)(i)	B1 Deth hursetheses connect Mexicos 2 on 11		
(b)(i) (ii)	B1 Both hypotheses correct. May use λ or μ B1 Must include underlined words o.e. Allow Po(10) to imply $25m^2$.		
()	Note: 'Rate' does not imply number/amount		
(iii)	B1 Must include underlined words o.e. Must be clear that the response refers to a set of values	rather than	
	a single value.		
	Note: Do not allow 'region' for set/range		
(c)	B1 Po(10) seen or implied		
	M1 for one correct probability from Po(10): $P(X \leq 3) = 0.0103$ or $P(X \leq 4) = 0.0293$		
	or $P(X \le 16) = 0.9730$ or $P(X \ge 17) = 0.0270$ or $P(X \le 17) = 0.9857$ or $P(X \ge 18) = 0.0143$		
	or $P(X \le 16) = 0.9730$ or $P(X \ge 17) = 0.0270$ or $P(X \le 17) = 0.9857$ or $P(X \ge 18) = 0.0270$.0145	
	1 st A1 either correct tail of the CR	.01+5	
	1 st A1 either correct tail of the CR 2 nd A1 fully correct CR (allow any letter(s) used instead of X)	.01+3	
(d)	1 st A1 either correct tail of the CR		

Question Number	Scheme	Marks
6.	Let $X =$ the number of seeds that germinate	
	Let Y = the number of seeds that don't germinate. $x_{obs} = 66$, $y_{obs} = 9$	
	$H_0: p = 0.96$, $H_1: p < 0.96$ or $H_0: p = 0.04$, $H_1: p > 0.04$ or $H_0: \lambda = 3$, $H_1: \lambda > 3$	B1 B1
	{ $Y \sim Bin(75, 0.04)$ approximates to } $Y \sim Po(3)$	B1
	$P(Y \ge 9) = 1 - P(Y \le 8) \text{ or } P(Y \le 7) = 0.9881 \implies P(Y \ge 8) = 0.0119$ $P(Y \le 8) = 0.9962$	M1
	=1-0.9962	
	$= 0.0038 \qquad \qquad \text{CR: } Y \ge 9$	A1
	{0.0038 < 0.01}	
	Reject H_0 or significant or 9 lies in the CR	dM1
	 Either There is evidence that the <u>producer</u> has <u>overstated</u> the <u>probability/percentage/proportion/number</u> of bean <u>seeds</u> that <u>germinate</u>. 	
	• <u>Producer's claim is not true</u> .	
	• There is evidence that the <u>producer</u> has <u>understated</u> the probability/percentage/proportion/number/ of bean seeds that don't germinate.	
		A1 cso
		[7]
	Notos	7
	Notes 1^{st} B1 for $H_0: p = 0.96$ or $H_0: p = 0.04$ or $H_0: / = 3$	
	2nd B1 for $H_0: p = 0.96$ and $H_1: p < 0.96$	
	or $H_0: p = 0.04$ and $H_1: p > 0.04$	
	or H_0 : $f = 3$ and H_1 : $f > 3$	
	$\mathbf{3^{rd} B1}$ Po(3) seen or implied	
	1 st M1 for writing or using $1 - P(Y \le 8)$ or giving $P(Y \le 7) = 0.9881$ or $P(Y \ge 8) = 0.0119$ for	or a CR method
	(may be implied by probability = 0.0038 or correct CR)	
	1 st A1 for 0.0038 or CR: $Y \ge 9$	
	2nd M1 Dependent on the 1 st M1. For a correct statement i.e. significant/reject $H_0/9$ is in C	CR
	Follow through their probability/CR and their H_1 May be implied by a correct contextual statement.	
	Ignore comparison of probability with the significance level.	
	Do not allow non-contextual conflicting statements.	
	2 nd A1cso fully correct solution and correct contextual statement	
	B1 B1Correct hypotheses (same mark scheme as above)B0N(72, 2.88)	
	M1 $\frac{\pm (66.5 - 72)}{\sqrt{2.88}} (=\pm 3.24)$	
	A0 awrt 0.0006	
	dM1A0cso (same mark scheme as above)	
	UNITAUCSO (same mark scheme as above)	

Question Number	Scheme	Marks
7. (a)	$\begin{cases} f(x) \\ 0.4 \end{cases}$ Correct shape with correct curvature and straight line with negative gradient. Must start and end on the <i>x</i> -axis.	B1
	2 6 (x) 2 , 6 and 0.4 labelled in the correct place	B1
(b)	$\frac{1}{\{Mode = \} 2} \qquad $	[2] B1 [1]
(c)	$\left\{ P(X>2) = \right\} \int_{2}^{6} \frac{1}{10} (6-x) dx \text{ or } \frac{1}{2} (6-2)(0.4) \text{ or } 1 - \int_{0}^{2} \frac{1}{20} x^{3} dx$	M1
	= 0.8 <u>0.8</u>	A1* cso [2]
(d)	$\frac{1}{80}x^4, \ 0 \le x \le 2$	B1
	$\int_{0}^{2} \frac{1}{20} t^{3} dt + \int_{2}^{x} \frac{1}{10} (6-t) dt = 0.2 + \frac{1}{10} \left[6t - \frac{1}{2} t^{2} \right]_{2}^{x} \text{ or}$ $\int \frac{1}{10} (6-x) dx = \frac{1}{10} (6x - \frac{1}{2} x^{2}) + c \text{ or } -\frac{1}{20} (6-x)^{2} + d \text{ with } F(2) = 0.2 \text{ or } F(6) = 1$	M1
	$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{80}x^4 & 0 \le x \le 2 \\ \frac{1}{10}(6x - \frac{1}{2}x^2 - 8)\text{ o.e. } 2 < x < 6 \\ 1 & x > 6 \end{cases}$ Condone \le for $<$ (etc.) throughout part (d) and vice versa	A1 B1
		[4]
(e)	$\left\{ P(X < a \mid X > 2) = \frac{5}{8} \Longrightarrow F(a) = \right\} \frac{5}{8} (0.8) + 0.2; = 0.7 \qquad \qquad \underline{0.7}$	M1A1
(f)	$\frac{1}{10}\left(6a - \frac{1}{2}a^2 - 8\right) = \frac{7}{10} \text{or} \frac{1}{2}(6 - a) \cdot \frac{1}{10}(6 - a) = 0.3$	[2] M1
	$\left\{a^2 - 12a + 30 = 0 \ \vartriangleright \right\} \ a = \frac{12 \pm \sqrt{12^2 - 4(1)(30)}}{2}$	dM1
	${a = 3.5505102 } = 3.55(3 \text{ sf})$ awrt <u>3.55</u> only	A1
		[3] 14
	Notes	19
(c)	M1 correct expression for $P(X > 2)$	
(d)	A1csocorrect solution with no incorrect working seen 1^{st} B1second line of $F(x)$ with correct limitsM1for a complete method to find $F(x)$ for $2 < x < 6$	
	either attempt to integrate (at least one $t^n \rightarrow t^{n+1}$) both parts of $f(t)$ with correct limits or with + c and uses $F(2) = 0.2$ or $F(6) = 1$ A1 third line of $F(x)$ with correct limits 2 nd B1 first and last line of $F(x)$ with correct limits	
(e)	M1 for $\frac{1}{2}$ + their F(2) allow $\frac{5}{8}$ (their (c)) + their F(2)	
(f)	1st M1 setting the 3^{rd} line of their $F(x)$ equal to their answer to part (e) or area of a triangle dependent on 1^{st} M1 for solving a 3 term quadratic [See notes in the marking guidance of the set of the s	