Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE In
Further Pure Mathematics (4PM1) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4PM1_01R_2019_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working

```
SC - special case
oe - or equivalent (and appropriate)
dep - dependent
indep - independent
awrt - answer which rounds to
eeoo - each error or omission
```

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \quad \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \quad \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.

3. Completing the square:

$$
x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration:

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

June 2019
4PM1 Further Pure Mathematics Paper 1

Question number		Marks
1 (a)	$l=r \theta \Rightarrow r=\frac{12}{1.5}=8$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$
(b)	$A=\frac{1.5}{2} \times 8^{2}=48\left(\mathrm{~cm}^{2}\right)$ ALT 1 $A=\frac{l^{2}}{2 \theta}=\frac{12^{2}}{2 \times 1.5}=48\left(\mathrm{~cm}^{2}\right)$ ALT 2 $A=\frac{1}{2} r l=\frac{1}{2} \times 8 \times 12=48\left(\mathrm{~cm}^{2}\right)$	M1A1 [2] \{M1A1\} [2] \{M1A1\} [2]
Total 3 marks		
(a)	$r=8$ $A=48\left(\mathrm{~cm}^{2}\right)$ units not required Use of $A=\frac{1}{2} r^{2} \theta$ $A=48\left(\mathrm{~cm}^{2}\right)$ units not required Use of $A=\frac{l^{2}}{2 \theta}$ $A=48\left(\mathrm{~cm}^{2}\right)$ units not required Use of $A=\frac{1}{2} r l$ $A=48\left(\mathrm{~cm}^{2}\right)$ units not required	
B1		
(b)		
M1		
A1		
$\begin{gathered} \text { ALT 1: } \\ \text { M1 } \end{gathered}$		
A1		
$\begin{aligned} & \text { ALT 2: } \\ & \text { M1 } \end{aligned}$		
A1		

Question number	Scheme	Marks
2 (a)	$\cos A B C=\frac{(2 x)^{2}+(4 x)^{2}-(3 x)^{2}}{2 \times 2 x \times 4 x}=\frac{x^{2}(4+16-9)}{x^{2}(16)}=\frac{11}{16}$ $l=\sqrt{16^{2}-11^{2}}=3 \sqrt{15}$ 11 $\sin A B C=\frac{3 \sqrt{15}}{16} *$ ALT $\sin ^{2} A B C=1-\frac{121}{256}=\frac{135}{256} \mathrm{p} \sin A B C=\frac{3 \sqrt{15}}{16} *$	M1A1 M1 A1 [4] \{M1A1\}
(b)	$\frac{75 \sqrt{15}}{64}=\frac{1}{2} \times 2 x \times 4 x \times \frac{3 \sqrt{15}}{16} \Rightarrow x^{2}=\frac{25}{16} \Rightarrow x=\frac{5}{4}$ oe (positive root only)	M1A1 [2]
Total 6 marks		
(a)		
M1	Use the cosine rule, either form. If not for angle $A B C$ there must be a complete method shown for obtaining $A B C$ Correct expression for $\cos A B C$ Use of Pythagoras' leading to $l=\ldots$ Obtains the given expression for $\sin A B C$ Use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ leading to $\sin ^{2} \theta=\ldots$ Obtains the given expression for $\sin A B C$ Use of $\frac{1}{2} a b \sin C=\frac{75 \sqrt{15}}{64}$ Need not be simplified. $x=\frac{5}{4}$ oe	
A1		
M1		
A1		
ALT:		
M1		
M1		
A1		

Question number	Scheme	Marks
3 (a)	$\log _{3} 9=2$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$
(b)	$\begin{aligned} & \log _{3} 9 t=\log _{9}\left(\frac{12}{t}\right)^{2}+2 \Rightarrow \log _{3} 9+\log _{3} t=2\left(\log _{9} 12-\log _{9} t\right)+2 \\ & \log _{3} 9+\log _{3} t=2\left(\frac{\log _{3} 12}{\log _{3} 9}-\frac{\log _{3} t}{\log _{3} 9}\right)+2 \\ & \Rightarrow \log _{3} 9+\log _{3} t=\log _{3} 12-\log _{3} t+2 \\ & \Rightarrow 2 \log _{3} t=\log _{3} 12 \Rightarrow \log _{3} t^{2}=\log _{3} 12 \\ & \Rightarrow t^{2}=12 \Rightarrow t=2 \sqrt{3} \end{aligned}$	M1M1 M1 A1 M1A1 [6]
Total 7 marks		
(a)		
B1	$\left(\log _{3} 9=\right) 2$ The \mathbf{M} marks can be seen anywhere in the solution Use of $\log A B=\log A+\log B$ or $\log \frac{A}{B}=\log A-\log B$	
(b)		
M1		
M1	Use of $\log A^{n}=n \log A$ Use of $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$	
M1		
A1	Simplifying to $2 \log _{3} t=\log _{3} 12$ oe or $\log _{3}\left(\frac{9 t^{2}}{12}\right)=2$ oe	
M1	Simplify to $t^{2}=\ldots$$t=2 \sqrt{3}$	
A1		

Question number	Scheme	Marks
5	$\begin{aligned} & A=\pi(3 r)^{2}=9 \pi r^{2} \Rightarrow \frac{\mathrm{~d} A}{\mathrm{~d} r}=18 \pi r \\ & \delta A \approx \frac{\mathrm{~d} A}{\mathrm{~d} r} \times \delta r=18 \pi r(\delta r) \\ & \frac{\delta A}{A} \approx \frac{18 \pi r}{A} \delta r=\frac{18 \pi r}{9 \pi r^{2}} \delta r=2 \frac{\delta r}{r} \end{aligned}$ So when $\frac{\delta r}{r}=0.05 \% \Rightarrow \frac{\delta A}{A} \approx 0.1 \%$ so the area increases by about 0.1% ALT $\text { Radius }(\text { after increase })=3 r \times\left(1+\frac{0.05}{100}\right)$ $=3.0015 r$ Area before increase $=\pi(3 r)^{2}=9 \pi r^{2}$ Area after increase $=$ $\begin{aligned} A=\pi(3.0015 r)^{2}= & 9.00900225 \pi r^{2} \\ \text { Percentage increase }= & \frac{9.00900225 \pi r^{2}-9 \pi r^{2}}{9 \pi r^{2}} \times 100=0.100025 \approx 0.1 \% \\ & \text { so the area increases by about } 0.1 \% \end{aligned}$	
Total 5 marks		
M1 B1	Differentiate A wrt r Use of $\delta A \approx \frac{\mathrm{~d} A}{\mathrm{~d} r} \times \delta r$ Use of $\frac{\delta A}{A}$ Use of $\frac{\delta r}{r}=0.05 \%$ Area increases by about 0.1% Finding the radius after the increase (may be implied by $3.0015 r$) $3.0015 r$ (may be implied by a correct area after the increase) Finding the area after the increase Use of $\frac{\text { Area (new)-Area (original) }}{\text { Area (original) }} \times 100$ Area increases by about 0.1%	
M1		
M1		
A1		
ALT:		
B1		
M1		
M1 A1		

Question number	Scheme	Marks
6 (a)	$\begin{aligned} & a=4 \times 1-3=1, \quad(d=4) \\ & \sum_{r=1}^{n} 4 r-3=\frac{n}{2}(2 \times 1+(n-1) 4)=n(2 n-1)^{*} \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \text { M1A1 } \\ {[3]} \\ \hline \end{gathered}$
(b)	$\begin{aligned} & n(2 n-1)>1000 \Rightarrow 2 n^{2}-n-1000>0 \\ & \frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 2 \times(-1000)}}{2 \times 2} \Rightarrow n>22.612 \ldots \Rightarrow n=23 \end{aligned}$	M1 M1A1 [3]
(c)	$\begin{aligned} & 3 t_{(n+7)}+18=S_{(n+4)} \\ & \Rightarrow 3[4(n+7)-3]+18=(n+4)[2(n+4)-1] \\ & \Rightarrow 2 n^{2}+3 n-65=0 \\ & 2 n^{2}+3 n-65=(2 n+13)(n-5)=0 \Rightarrow n=5 \end{aligned}$	M1 A1 depM1A1 [4]
Total 10 marks		
(a)		
B1	$a=1$ Use of $S=\frac{n}{2}(2 a+(n-1) d)$ or $S=\frac{n}{2}(a+L)$	
M1		
A1 (b)	Obtains the given expression	
M1	Sets up a 3 term quadratic from the given information (Condone $=$ rather than $>$)	
M1	Solve their 3 term quadratic (May be implied by 22.6 ...)	
A1	$n=23$	
(c)		
M1	Substitution of $n+7$ and $n+4$	
A1	A correct 3 term quadratic	
depM1 A1	Solve their 3 term quadratic (Dependent on previous M mark) $n=5$ (must reject other answer if offered)	

(a)	
M1	$\overrightarrow{B C}=\overrightarrow{B O}+\overrightarrow{O C}$
A1	$\overrightarrow{B C}=-7 \mathbf{i}+7 \mathbf{j}$
(b)	
B1	$\sqrt{98}$ oe
B1	$\frac{1}{\sqrt{98}}(-7 \mathbf{i}+7 \mathbf{j}) \text { oe }$
(c)	
B1	$\overrightarrow{O N}=5 \mathbf{i}-2 \mathbf{j}$ (may be implied by $\overrightarrow{M N}$)
M1	$\overrightarrow{M N}=-(4 \mathbf{i}-3 \mathbf{j})+5 \mathbf{i}-2 \mathbf{j}(=\mathbf{i}+\mathbf{j})$
M1	$\overrightarrow{M C}=-(4 \mathbf{i}-3 \mathbf{j})+8 \mathbf{i}+\mathbf{j}(=4 \mathbf{i}+4 \mathbf{j})$
A1	Correct conclusion from correct working e.g. $\overrightarrow{M C}=4 \overrightarrow{M N}$
ALT 1 B1	
M1	$\overrightarrow{M N}=-(4 \mathbf{i}-3 \mathbf{j})+5 \mathbf{i}-2 \mathbf{j}(=\mathbf{i}+\mathbf{j})$
M1	$\overrightarrow{N C}=10 \mathbf{i}-4 \mathbf{j}-7 \mathbf{i}+7 \mathbf{j}(=3 \mathbf{i}+3 \mathbf{j})$ or $-(5 \mathbf{i}-2 \mathbf{j})+8 \mathbf{i}+\mathbf{j}(=3 \mathbf{i}+3 \mathbf{j})$
A1	Correct conclusion from correct working e.g. $\overrightarrow{N C}=3 \overrightarrow{M N}$
ALT 2	
$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	$\overrightarrow{N B}=10 \mathbf{i}-4 \mathbf{j}$ (may be implied by $\overrightarrow{N C}$)
M1	$\overrightarrow{M C}=-(4 \mathbf{i}-3 \mathbf{j})+8 \mathbf{i}+\mathbf{j}(=4 \mathbf{i}+4 \mathbf{j})$
A1	$\overrightarrow{N C}=10 \mathbf{i}-4 \mathbf{j}-7 \mathbf{i}+7 \mathbf{j}(=3 \mathbf{i}+3 \mathbf{j})$
	Correct conclusion from correct working e.g. $\overrightarrow{N C}=\frac{3}{4} \overrightarrow{M C}$
	For part c: Send any geometrical solutions to review

Question number	Scheme	Marks
10 (a)	$\begin{aligned} & 6 x-x^{2}=-\left(x^{2}-6 x\right) \\ & -\left(x^{2}-6 x\right)=-\left\{(x-3)^{2}-9\right\} \Rightarrow \mathrm{f}(x)=-(x-3)^{2}+9 \\ & D=-1, E=-3 \text { and } F=9 \end{aligned}$	$\begin{gathered} \text { M1A1A1 } \\ {[3]} \end{gathered}$
(b)	(i) $\mathrm{f}(x)_{\max }=9$ (ii) $\quad x=3$	B1ft B1ft [2]
(c)	$\begin{aligned} & 6 x-x^{2}=x^{2}-4 x+8 \Rightarrow 2 x^{2}-10 x+8=0 \\ & 2 x^{2}-10 x+8=(2 x-2)(x-4) \Rightarrow x=1, x=4 \\ & y=5, \quad y=8 \end{aligned}$ Coordinates are $(1,5)$ and $(4,8)$	$\begin{gathered} \text { M1 } \\ \text { M1A1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$
(d)	$\begin{aligned} & \text { Area }=\int_{1}^{4}\left(6 x-x^{2}\right) \mathrm{d} x-\int_{1}^{4}\left(x^{2}-4 x+8\right) \mathrm{d} x=\int_{1}^{4}\left[-2 x^{2}+10 x-8\right] \mathrm{d} x \\ & =\left[\frac{-2 x^{3}}{3}+\frac{10 x^{2}}{2}-8 x\right]_{1}^{4} \\ & =\left(\frac{-2 \times 4^{3}}{3}+\frac{10 \times 4^{2}}{2}-8 \times 4\right)-\left(\frac{-2 \times 1^{3}}{3}+\frac{10 \times 1^{2}}{2}-8 \times 1\right)=9\left(\text { units }^{2}\right) \end{aligned}$	M1 M1 M1A1 [4]
Total 13 marks		
(a)		
M1 A1	An attempt to factorise to make x^{2} positive e.g. $-(x \pm a)^{2} \pm b$ Complete the square to obtain an expression in the form $-(x \pm 3)^{2} \pm q$ NB Any expression in this form will score M1A1	
A1 (b)	$D=-1, E=-3 \text { and } F=9$	
B1 ft	$\left(\mathrm{f}(x)_{\text {max }}=\right) 9$ or follow through their value for F.	
B1 ft	$(x=) 3$ or follow through their value for E.	
M1	Equating the two curves and simplifying to a 3 term quadratic	
M1	Solve their 3 term quadratic$x=1, x=4$	
A1		
A1	$(1,5)$ and (4, 8)	
(d)	Use of $\int_{a}^{b}(\mathrm{f}(x)-\mathrm{g}(x)) \mathrm{d} x$ or $\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x-\int_{a}^{b} \mathrm{~g}(x) \mathrm{d} x$ Ignore limits ($\mathrm{f}(x)$ and $\mathrm{g}(x)$ can be either way round)	
M1	Attempt the integration. Limits not needed.	
M1	Substitute the correct limits. $9 \text { (units }^{2} \text {) }$ NB A correct answer with no working will score 4 out of 4	
A1		

Question number	Scheme	Marks
11 (a)	$\frac{y-6}{x-5}=\frac{6-3}{5--1} \Rightarrow 2 y-12=x-5$	M1A1 [2]
(b)	$\left(\frac{2 \times 5+1 \times-1}{2+1}, \frac{2 \times 6+1 \times 3}{3}\right) \Rightarrow(3,5) *$	$\begin{gathered} \text { M1A1 } \\ {[2]} \\ \hline \end{gathered}$
(a) M1 A1 (b) M1 A1	A fully correct method for finding the equation of a straight line e.g. $\begin{aligned} & \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & 2 y-12=x-5 \mathrm{oe} \end{aligned}$ Use of $\left(\frac{q x_{1}+p x_{2}}{p+q}, \frac{q y_{1}+p y_{2}}{p+q}\right)$ or $\binom{-1}{3}+\frac{2}{3} \times\binom{ 6}{3}$ Obtains the given coordinates	

(d)

$\frac{y-'^{\prime}-3^{\prime}}{x-'^{\prime}}=\frac{1}{2} \Rightarrow\left\{y=\frac{x-13}{2}\right\}, \frac{y-3}{x--1}=-2 \Rightarrow\{y=-2 x+1\}$	M1
Solving simultaneous equations by any method	M1A1
$\frac{x-13}{2}=-2 x+1 \Rightarrow p=3$ and $q=-5$	[3]

ALT (d) using vectors

(d)
$\overrightarrow{A D}=\overrightarrow{P C}=\binom{4}{-8}$

$$
\text { Coordinates of point } \mathrm{D} \Rightarrow(-1+(4), 3+(-8))=(3,-5)
$$

(e)

Length of $A B \sqrt{(6-3)^{2}+(5--1)^{2}}=3 \sqrt{5}$
Length of $C D \sqrt{(-3--5)^{2}+(7-3)^{2}}=\sqrt{20}=2 \sqrt{5}$
Area of trapezium $=\frac{1}{2}(3 \sqrt{5}+2 \sqrt{5}) \times 4 \sqrt{5}=50\left(\right.$ units $\left.^{2}\right)$

ALT (e) using vectors

