# edexcel 

## Mark Scheme (Results)

## Summer 2016

Pearson Edexcel International GCSE in Further Pure Mathematics Paper 1 (4PMO/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4PMO_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks. Can only be awarded if the relevant method mark(s) has (have) been gained.
o B marks: unconditional accuracy marks (independent of $M$ marks)


## - Abbreviations

o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC - special case
o oe - or equivalent (and appropriate)
o dep-dependent
o indep - independent
o eeoo - each error or omission

## - No working

If no working is shown then correct answers may score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

## - With working

If there is a wrong answer indicated always check the working and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread which does not significantly simplify the question loses two A (or B) marks on that question, but can gain all the M marks. Mark all work on follow through but enter A0 (or B0) for the first two A or B marks gained.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

## - Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

## - Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially shows that the candidate did not understand the demand of the question.

## - Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

## - Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

## General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

## Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text { where }|p q|=|c| \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a|
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for $a, b$ and $c$, leading to $x=. .$. .
3. Completing the square:

Solving $x^{2}+b x+c=\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c$ where $q \neq 0$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1.
2. Integration:

Power of at least one term increased by 1.

Use of a formula:

Generally, the method mark is gained by
either quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication
from the substitution of correct values and then proceeding to a solution.

## Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".
General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....

## Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

## Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks <br>
\hline 1(a)

(b) \& \begin{tabular}{l}
Substitute $x= \pm 2$ or divide by $(x-2)$ <br>
Rem $=0$ <br>
Use remainder theorem with $x= \pm 1, \pm 3$; remainder theorem again or inspection OR Divide $\mathrm{f}(x)$ by $x-2$, Factorise quadratic <br>
$(x-2)(x+3)(x-1) \quad$ All 3 brackets must be shown.

 \& 

M1 <br>
A1 <br>
(2) <br>
M1M1 <br>
A1 <br>
(3) <br>
[5]
\end{tabular} <br>

\hline
\end{tabular}

## Notes

(a)

M1: for either substituting $\pm 2$ or attempting to divide by $(x-2)$
A1: for the remainder $=0$
This is a show so please check that $f( \pm 2)=( \pm 2)^{3}-7( \pm 2)+6$ is seen for M1 and $8-14+6=0$ or $2^{3}-2 \times 7+6=0$ is seen for the A mark

## ALT Using division

M1: minimally acceptable answer for the quotient for this mark is $x^{2}+2 x \pm k$ If there is no evidence of inclusion of a term in $x^{2}$ somewhere in their division - M0
A1: correct quotient $(x-2)\left(x^{2}+2 x-3\right)$ and there must be a conclusion. ie., therefore $(x-2)$ is a factor oe.
(b)

In general, first M1 for finding one factor or dividing by $(x-2)$, second M 1 for finding second factor.

M1: for remainder theorem OR by inspection OR divide by $(x-2)$ to give a quadratic factor OR by expanding and comparing coefficients.
Note: If there is no evidence of inclusion of a term in $x^{2}$ somewhere in their division - M0 Look for $x^{2}+2 x \pm k$ to award M1

M1: for using remainder theorem again OR by inspection OR factorising the quadratic factor (refer to general guidance) OR by comparing coefficients
A1: for answer as shown
Note: $(x-2)(x-3)(x+1)$ with no working is M0M0A0

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 2(a) | $\left(1+3 x^{2}\right)^{-\frac{1}{3}}=1+\left(-\frac{1}{3}\right)\left(3 x^{2}\right)+\frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{2!}\left(3 x^{2}\right)^{2}+\frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{3!}\left(3 x^{2}\right)^{3} \ldots$ | M1 |
|  | $=1-x^{2}+2 x^{4}-\frac{14}{3} x^{6} \ldots$ | A1A1 <br> (3) |
| (b) | $\mathrm{f}(x)=\left(1-k x^{2}\right)\left(1+3 x^{2}\right)^{-\frac{1}{3}}$ |  |
|  | $=\left(1-k x^{2}\right)\left(1-x^{2}+2 x^{4}-\frac{14}{3} x^{6}\right) \ldots$ | M1 |
|  | $=1-k x^{2}-x^{2}+k x^{4}+2 x^{4}+\ldots$ | M1 |
| (c) | $=1-(1+k) x^{2}+(k+2) x^{4}+\ldots$ | A1 |
|  |  | (3) |
|  | $k=4$ |  |
|  |  | (1) [7] |

## Notes

(a)

M1: for using a binomial expansion at least up to the term in $x^{6}$. Each term, must have at least, the correct power of $x$ and the correct denominator. Allow slips in $n(n-1)(n-2)$. The expansion must start with 1 . Must see evidence of $3 x^{2}$ used correctly at least once.
A1: for two correct algebraic terms simplified.
A1: for a fully correct simplified expansion all on one line.
(b)

M1: for setting their binomial expansion at least up to the term in $x^{4}$ from (a) multiplied by $\left(1-k x^{2}\right)$

M1: for multiplying out their expansion by $\left(1-k x^{2}\right)$ at least up to the term in $x^{4}$. There will be 5 terms in the expansion. Ignore any terms beyond $x^{4}$
A1: for a fully correct expansion (which need not be simplified)
(c)

B1: for $k=4$

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3(a) | $A C^{2}=10^{2}+10^{2}$ or $\left(\frac{1}{2} A C\right)^{2}=5^{2}+5^{2}$ | B1 |
|  | $A E^{2}=8^{2}+50(=114)$ | M1 |
|  | $A E=10.67 . .=10.7$ | $\begin{aligned} & \text { A1 } \\ & \text { (3) } \end{aligned}$ |
| (b) | Required angle is between $E X$ and the base where $X$ is midpoint of $A B$ | B1 |
|  | $\tan \theta=\frac{\mathrm{ht}}{\frac{1}{2} A D}=\frac{8}{5}$ | M1 (any trig function for angle) |
|  | $\theta=57.99 \ldots=58^{\circ}$ | $\begin{aligned} & \mathrm{A} 1 \\ & (3) \\ & {[6]} \end{aligned}$ |
| Notes |  |  |
| (a) |  |  |
| B1: for using Pythagoras theorem to find $A C^{2}$ or $\left(\frac{1}{2} A C\right)^{2}$ |  |  |
| M1: for applying Pythagoras theorem correctly to find $A E^{2}$, using a side of 8 cm and their $\left(\frac{1}{2} A C\right)^{2}$ |  |  |
| A1: for $A E=10.7$ |  |  |
| (Please refer to general guidance for rounding to significant figures) |  |  |
|  |  |  |
| B1: for identifying the required angle in a correct triangle. That is all that is required for this mark and can be gained by implication from subsequent correct work. <br> M1: for any acceptable trigonometry to find the required angle. |  |  |
| To use $\cos$ or sin they need the midpoint of $A B, D C, C B$ or $A D$ and the length from $E$ to the midpoint to any of those sides is $\sqrt{89}=9.43$.. |  |  |
| Beware: Candidates must identify the correct angle so finding $58^{\circ}$ from using 9.43 as $A E$ and 8 as the height will give the correct answer, but this is B0M0 |  |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4(a) | $\begin{aligned} & S_{2}=2 a+d=\frac{2}{3}(a+4 d) \\ & S_{4}=2(2 a+3 d)=a+9 d+3 \\ & 4 a=5 d \\ & a=d+1 \end{aligned}$ <br> (i) $d=4$ <br> (ii) $a=5$ | M1 <br> (either) <br> A1 (both) <br> dM1A1A1 |
| (b) | $\begin{aligned} & S_{p+2}-S_{p}=t_{p+2}+t_{p+1} \\ & 5+4(p+1)+5+4 p=110 \\ & 14+8 p=110 \\ & p=12 \end{aligned}$ <br> Alt: Use difference of sums with formula for sum (M1 complete method, A1 correct equation A1 correct answer) | M1A1 <br> A1 cso <br> (3) |

## Notes

(a)

M1: for either a correct equation for $S_{2}$ OR $S_{4}$
A1: for correct equations for both $S_{2}$ AND $S_{4}$
dM1: for forming and attempting to solve TWO simultaneous equations in $a$ and $d$ only. This mark is dependent on the first method mark. Please check carefully that both equations are used to find $a$ and $d . \quad a=5$ and $d=4$ is a common answer coming from using only $4 a=5 d$.
(i)

A1: $\quad$ for $d=4$
(ii)

A1: for $a=5$
(b)

M1: for the difference of $S_{p+2}$ and $S_{p}$ equated to the sum of $t_{p+2}$ and $t_{p+1}$. Uses $a+(n-1) d$ for both and equates to 110 , with an attempt to find $p$. The method must be complete for this mark.
A1: for fully correct substitution, so $5+4(p+2-1)+5+(p+1-1)=110$ is fine for this mark.
A1: for $\mathrm{p}=12$ cso
Note: The final A mark is to be withheld from candidates who obtain a correct $a$ and $d$ from an incorrect method in part (a)

## ALT

M1: for an attempt to find the difference of the summation formulae (using their $a$ and $d$ ),
equated to 110 with an attempt to find $p$. The summation formula must be correct for this mark.

$$
\begin{aligned}
& S_{p+2}-S_{p}=\frac{p+2}{2}(2 \times 5+(p+2-1) 4)-\frac{p}{2}(2 \times 5+(p-1) 4)=110 \\
& (p+2)(7+2 p)-p(2 p+3)=110 \\
& 8 p+14=110 \\
& p=12
\end{aligned}
$$

A1: for a fully correct substitution into $S_{p+2}-S_{p}$ with correct $a$ and $d$.
A1: for $p=12$ cso
Note: The final A mark is to be withheld from candidates who obtain a correct $a$ and $d$ from an incorrect method in part (a)

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 5(a) | $\begin{aligned} & 3(\sin x \cos \alpha+\cos x \sin \alpha)=5(\sin x \cos \alpha-\cos x \sin \alpha) \\ & 8 \cos x \sin \alpha=2 \sin x \cos \alpha \\ & 8 \frac{\sin \alpha}{\cos \alpha}=2 \frac{\sin x}{\cos x} \\ & \tan x=4 \tan \alpha \\ & \tan 2 y=4 \tan 30 \\ & \tan 2 y=2.30940 \ldots . . \\ & 2 y=66.586,246.58,426.58 \\ & y=123^{\circ} \end{aligned}$ | M1 <br> A1 <br> dM1 <br> ddM1A1 <br> (5) <br> M1A1 <br> dM1 (any <br> correct <br> value) <br> A1 <br> (4) <br> [9] |
| (a) I <br> $1^{\text {st }} \mathrm{M} 1$ for <br> Allow 5s $2^{\text {nd }}$ M1 fo This is de $3^{\text {rd }}$ M1 for In $1^{\text {st }} \mathrm{A} 1$, for $2^{\text {nd }} \mathrm{A} 1$, fo as above M1A1M0 <br> M1: for <br> A1: for <br> dM1: fo <br> ddM1: <br> $\tan x$ and A1*: for There mu (b) | general, M marks; <br> using the given identity to expand $3 \sin (x+\alpha)$ and $5 \sin$ $(x-\alpha)=5\{\sin x \cos (-\alpha)+\cos x \sin (-\alpha)\}$ <br> dividing their expansion by either $\cos \alpha$ AND $\cos x$ or endent on the first $M$ mark. <br> using the identity for $\tan$ This is dependent on BOTH eneral, A marks; <br> collecting like terms at the beginning or near the end. the correct answer and solution as given. You must see do not allow for example; $8 \cos x \sin \alpha=2 \sin x \cos \alpha \Rightarrow$ M0A0 <br> sing the given identity to expand $3 \sin (x+\alpha)$ and $5 \sin$ implifying the expansion to $8 \cos x \sin \alpha=2 \sin x \cos \alpha$ rearranging their equation to $8 \frac{\sin \alpha}{\cos \alpha}=2 \frac{\sin x}{\cos x}$ oe. <br> $r$ using the given identity to convert their rearranged equ $\tan \alpha$ <br> chieving the given result. <br> t be no errors in their work for the award of this mark | the M marks is scores |

M1: for using the given result from part (a) to substitute $2 y$ for $x$, and $30^{\circ}$ for $\alpha$.
A1: for $\tan 2 y=\frac{4 \sqrt{3}}{3}=2.30940 \ldots$ accept $\tan 2 y=2.3$
dM 1 : for any correct value for $2 y$ (correct to 1 dp or better), or any correct valid value for $y$ (This mark can implied from the correct answer) Dependent on $1^{\text {st }} \mathbf{M}$ mark.
A1: for $y=123^{\circ}$. Ignore extra values outside of the required range.

SC: $\tan 2 y=4 \tan 30^{\circ} \Rightarrow y=33^{\circ}$ implies M1A1M1A0
Note: You will see $\tan 2 y=4 \tan 30^{\circ} \Rightarrow y=123^{\circ}$ because candidates will leave the calculation in their calculators. This is full marks.

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6(a) | $x^{5}=1024, \quad x=4$ | $\begin{aligned} & \mathrm{M} 1, \mathrm{~A} 1 \\ & (2) \end{aligned}$ |
| (b) | $7 y-3=3^{4}=81, y=12$ | $\begin{aligned} & \mathrm{M} 1, \mathrm{~A} 1 \\ & (2) \end{aligned}$ |
| (c) | $2 \log _{a} 5+8 \log _{a} 5=10 \text { or } \log _{\mathrm{a}} 25+4 \log _{a} 25=10$ | M1 |
|  | $\log _{a} 5=1 \quad \text { or } \quad \log _{a} 25=2$ | M1 |
|  |  | A1 |
|  | $a=5$ | (3) |
| (d) | $\frac{1}{\log _{7} b}-2 \log _{7} b+1=0 \quad$ (or change to base $b$ ) | M1 |
|  | $1-2\left(\log _{7} b\right)^{2}+\log _{7} b=0$ | dM1 |
|  | $\left(2 \log _{7} b+1\right)\left(\log _{7} b-1\right)=0$ | ddM1 |
|  | $\log _{7} b=-\frac{1}{2} \quad b=7^{-\frac{1}{2}} \quad(=0.3779 \ldots=0.378)$ | A1 |
|  | $\log _{7} b=1 \quad b=7$ | $\begin{aligned} & \mathrm{A} 1 \\ & (5) \end{aligned}$ |
|  |  | [12] |
|  | Notes |  |
| (a) |  |  |
| M1: 'undoes' the log to write $x^{5}=1024$ <br> A1: for $x=4$ <br> Award M1A1 for $x=4$ seen only <br> (b) |  |  |
|  |  |  |
|  |  |  |
| M1: 'un <br> A1: for <br> (c) | does' the log to achieve $7 y-3=3^{4}$ or $7 y-3=81 \Rightarrow$ $y=12$ |  |
| Eg. $2 \log _{a} 5+8 \log _{a} 5=10$ or $\log _{a} 25+4 \log _{a} 25=10$ or $\log _{a} 25+\log _{a} 625^{2}=10$ |  |  |
| M1: the second M mark is for combining the logs |  |  |
| A1: $a=5$ note $a= \pm 5$ is A0 |  |  |
| SC: Because $5^{2}=25$ and $5^{4}=625$ you will see the following or similar; |  |  |

$2+2 \times 4=2+8=10 \Rightarrow a=5$
Award full marks for a correct answer of $a=5$ seen from this method.
(d)

M1: for changing the base of the $\log$ correctly either $b$

$$
\log _{b} 7=\frac{\log _{7} 7}{\log _{7} b} \text { or } \log _{7} b=\frac{\log _{b} b}{\log _{b} 7}
$$

dM1: for forming a 3 term quadratic in either $\log _{b} 7$ or $\log _{7} b$

## Dependent on first M mark

$1-2\left(\log _{7} b\right)^{2}+\log _{7} b=0 \quad$ or $\quad\left(\log _{b} 7\right)^{2}+\log _{b} 7-2=0$
ddM1: for solving their 3TQ and achieving two roots of their equation
Dependent on both $M$ marks in (d)
$\left(2 \log _{7} b+1\right)\left(\log _{7} b-1\right)=0 \quad$ or $\quad\left(\log _{b} 7-1\right)\left(\log _{b} 7+2\right)=0$
A1: for EITHER $\log _{7} b=-\frac{1}{2} \Rightarrow b=7^{-\frac{1}{2}} \quad(=0.3779 \ldots=0.378)$
or $\log _{b} 7=-2 \Rightarrow b^{-2}=7 \Rightarrow b=7^{-\frac{1}{2}}=\frac{1}{\sqrt{7}} \quad$ (accept awrt 0.378)
OR $\log _{b} 7=1$ so $b=7$
A1: for BOTH correct answers
SC: some candidates are giving $1-2+1=0 \Rightarrow \log _{b} 7-1=0 \Rightarrow b=7$ Award first M mark only.
Beware of $2 \log _{7} b=0.5 \log _{b} 7 \Rightarrow b=\frac{1}{\sqrt{7}}$ This is M0.
A method using Trial and Improvement is M0


## Notes

(a)

B1: for one correct value
B1: for all values correct
(b)

B1 ft: for all points plotted correctly within half of one square
B1 ft: points joined up in a smooth curve
NOTE Part (c) and (d) must have evidence of their graph being used.
(c)

M1: for 'undoing' the log and substituting into $y=2^{x}-4 \Rightarrow y=7-4=3$
OR $\begin{aligned} & y=2^{x}-4 \Rightarrow 2^{x}=y+4 \Rightarrow x=\log _{2}(y+4) \\ & \log _{2} 7=\log _{2}(y+4) \Rightarrow y=3\end{aligned}$
Note: an answer of 2.80 .. without working or evidence of a mark or line on their graph is M0 M1: for drawing the line $y=3$ or vertical from point on graph where $y=3$ to $x$-axis or some evidence of using their graph from $y=3$.
A1: for $x=2.8$
(d)

M1; for attempting to re-arrange the equation to give $2^{x}-4= \pm k \pm 3 x \quad k \neq 7$ or 0
A1: for $2^{x}-4=3-3 x$
M1: for drawing their ' $y=3-3 x$ ' (look for intersections at $(0,3)$ and $(1,0)$ for the correct line) but it must be in the form $y= \pm k \pm 3 x \quad k \neq 7$ or 0
A1: for $x=1.4$

## Note on Rounding

Some candidates are giving answers in (c) and (d) to 2 dp . Penalise only once (the first time)
PROVIDED the answers given both round to 2.8 and 1.4 respectively. If answers given are for example, (c) 2.83 (d) 1.45 , then this loses both A marks because part (c) is rounded incorrectly and part (d) rounds to 1.5 which is incorrect.

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 8(a) | (i) $\frac{2}{3} \mathbf{b}-\mathbf{a}$ <br> (ii) $\overrightarrow{O E}=\overrightarrow{O A}+\frac{2}{5} \overrightarrow{A D}=\mathbf{a}+\frac{2}{5}\left(\frac{2}{3} \mathbf{b}-\mathbf{a}\right)=\frac{3}{5} \mathbf{a}+\frac{4}{15} \mathbf{b}$ $\begin{aligned} & \text { (iii) } \overrightarrow{B E}=\overrightarrow{O E}-\overrightarrow{O B}=\frac{3}{5} \mathbf{a}+\frac{4}{15} \mathbf{b}-\mathbf{b}=\frac{3}{5} \mathbf{a}-\frac{11}{15} \mathbf{b} \\ & \overrightarrow{F E}=\overrightarrow{O E}-\overrightarrow{O F}=\frac{3}{5} \mathbf{a}+\frac{4}{15} \mathbf{b}-\lambda \mathbf{a} \end{aligned}$ <br> $F, E, B$ collinear $\frac{\frac{3}{5}-\lambda}{\frac{4}{15}}=\frac{\frac{3}{5}}{-\frac{11}{15}}$ $\begin{aligned} & \frac{3-5 \lambda}{4}=\frac{3}{-11} \\ & \lambda=\frac{9}{11} \end{aligned}$ | M1A1 <br> M1A1 <br> (5) <br> M1A1 <br> M1A1 <br> A1 <br> (5) |
|  | ALT $\begin{aligned} & \overrightarrow{O F}+\overrightarrow{F B}=\overrightarrow{O B} \\ & \lambda \mathbf{a}+\mu\left(-\frac{3}{5} \mathbf{a}+\frac{11}{15} \mathbf{b}\right)=\mathbf{b} \\ & \mu=\frac{15}{11} \quad \lambda=\frac{3}{5} \mu \\ & \lambda=\frac{9}{11} \end{aligned}$ | A1 <br> M1A1 <br> A1 <br> (5) |
| (c) | $\begin{aligned} & \triangle O F B=5 \text { units }^{2} \Rightarrow \triangle O A B=\frac{11}{9} \times 5 \text { units }^{2} \\ & \triangle O A D=\frac{2}{3} \triangle O A B=\frac{2}{3} \times \frac{55}{9}=\frac{110}{27} \text { units }^{2} \end{aligned}$ | M1 <br> M1A1 |
|  | $\begin{aligned} & \text { ALT } \\ & \frac{\text { area } \triangle O F B}{\text { area } \triangle O A D}=\frac{9 / 11}{2 / 3}=\frac{27}{22} \\ & \text { area } \triangle O A D=\frac{22}{27} \times 5=\frac{110}{27} \end{aligned}$ | M1 <br> M1A1 <br> (3) [13] |

## Notes

(a) (i)

B1: for $\frac{2}{3} \mathbf{b}-\mathbf{a}$
(ii)

M1: for $\overrightarrow{O E}=\overrightarrow{O A}+\frac{2}{5} A D$ (for the vector statement)
(or for any other valid path)
A1: $\quad \overrightarrow{O E}=\frac{3}{5} \mathbf{a}+\frac{4}{15} \mathbf{b}$
(iii)

M1: for $\overrightarrow{B E}=\overrightarrow{O E}-\overrightarrow{O B}$ (for the vector statement)
(again for any other valid path)
A1: $\quad \overrightarrow{B E}=\frac{3}{5} \mathbf{a}-\frac{11}{15} \mathbf{b}$
(b)

M1: for $\overrightarrow{F E}=\overrightarrow{O E}-\overrightarrow{O F}$
A1: for $\overrightarrow{F E}=\frac{3}{5} \mathbf{a}+\frac{4}{15} \mathbf{b}-\lambda \mathbf{a} \quad\left(=\mathbf{a}\left(\frac{3}{5}-\lambda\right)+\frac{4}{15} \mathbf{b}\right)$
M1: for using their $\overrightarrow{F E}$ and $\overrightarrow{B E}$ to form;

$$
\frac{\frac{3}{5}-\lambda}{\frac{4}{15}}=\frac{\frac{3}{5}}{-\frac{11}{15}} \quad \text { or } \quad \frac{\frac{3}{5}-\lambda}{\frac{3}{5}}=\frac{\frac{4}{15}}{-\frac{11}{15}}
$$

A1: for the correct equation in $\lambda$
A1: $\lambda=\frac{9}{11}$
ALT

M1: for $\overrightarrow{O F}+\overrightarrow{F B}=\overrightarrow{O B}$ oe
A1: for the correct expression in terms of $\lambda$ and $\mu$ (or any other letter for the second constant)
M1: for comparing coefficients of $\lambda$ and their $\mu$
A1: for achieving $\mu$ and an expression for $\lambda$ in terms of $\mu$
A1: $\lambda=\frac{9}{11}$
(c)

M1: for stating and using that area of triangle $\triangle O A B=\frac{11}{9} \times$ area of $\triangle O F B \Rightarrow \triangle O A B=\frac{11}{9} \times 5$ Note: area of triangle $O A B=$ the reciprocal of their $\lambda \times 5$
M1: for stating and using that area of $\triangle O A D=\frac{2}{3} \times$ area of $\triangle O A B$
A1: area of triangle $O A D=\frac{110}{27}$

## ALT 1

M1: for the ratio of areas of triangle $O F B$ and triangle $O A D$ as follows;

$$
\begin{aligned}
& \frac{\text { area } \triangle O A B}{\text { area } \triangle O F B}=\frac{11}{9} \text { and } \frac{\text { area } \triangle O A D}{\text { area } \triangle O A B}=\frac{2}{3} \Rightarrow \\
& \frac{\text { area } \triangle O A D}{\text { area } \triangle O F B}=\frac{11}{9} \times \frac{2}{3}=\frac{22}{27}
\end{aligned}
$$

M1: for $\frac{\triangle O A D}{5}=\frac{22}{27}$
A1: area of triangle $O A D \frac{110}{27}$

## ALT 2

M1: for using $\frac{1}{2} a b \sin C$ on triangles $O A D$ and $O F B$
Triangle $O F B: \frac{1}{2} \times \frac{9}{11}|\mathbf{a}| \times|\mathbf{b}| \times \sin \theta=5 \quad$ AND $\quad$ Area $O A D=\frac{1}{2} \times|\mathbf{a}| \times \frac{2}{3}|\mathbf{b}| \times \sin \theta$
M1: for substituting $\cdot \sin \theta=\frac{110}{9|\mathbf{a} \| \mathbf{b}|}$ into $\Rightarrow$ Area $O A D=\frac{|\mathbf{a}||\mathbf{b}|}{3} \times \frac{110}{9|\mathbf{a}||\mathbf{b}|}\left(=\frac{110}{27}\right)$
A1: area of triangle $O A D \frac{110}{27}$

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 9 (a) (i) | $\begin{aligned} & \alpha+\beta=\frac{5}{3}, \quad \alpha \beta=-\frac{4}{3} \\ & \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\ & \frac{25}{9}+\frac{8}{3}=-\frac{49}{12} \\ & -\frac{4}{3} \\ & \frac{\alpha}{\beta} \times \frac{\beta}{\alpha}=1 \\ & x^{2}-(\text { sum }) x+\text { product } \quad(=0) \\ & x^{2}-\left(-\frac{49}{12}\right) x+1(=0) \\ & 12 x^{2}+49 x+12=0 \end{aligned}$ | B1 Award in (i) or <br> (ii) <br> M1 <br> A1 <br> B1 <br> M1 <br> A1 <br> (6) |
| (ii) | $\begin{aligned} & 2 \alpha+\beta+\alpha+2 \beta=3 \times \frac{5}{3}=5 \\ & (2 \alpha+\beta)(\alpha+2 \beta)=2 \alpha^{2}+5 \alpha \beta+2 \beta^{2} \\ & =2(\alpha+\beta)^{2}+\alpha \beta,=2 \times \frac{25}{9}-\frac{4}{3}=\frac{38}{9} \\ & x^{2}-5 x+\frac{38}{9}(=0) \\ & 9 x^{2}-45 x+38=0 \end{aligned}$ | B1 <br> M1,A1 <br> M1 <br> A1 <br> (5) |
| (b) | $\begin{aligned} & \mathrm{f}(x)=3\left(x^{2}-\frac{5}{3} x\right)-4=3\left[\left(x-\frac{5}{6}\right)^{2}-\frac{25}{36}\right]-4 \\ & =3\left(x-\frac{5}{6}\right)^{2}-\frac{73}{12} \end{aligned}$ <br> (or by expanding $A(x+B)^{2}+C$ and equating coeffs) | M1 <br> A1A1 <br> (3) |
| (c) | $\mathrm{f}(x)=-8 \Rightarrow 3\left(x-\frac{5}{6}\right)^{2}-\frac{73}{12}=-8$ <br> $3\left(x-\frac{5}{6}\right)^{2}=\frac{73}{12}-8<0 \quad \therefore$ no values of $x$ possible ie no real roots (or any other complete method M1; correct solution and conclusion A1) | M1A1cso <br> (2) [16] |

## Notes

(a) (i)

B1: for writing down the product and sum of the roots. This could be embedded in their calculations for sum and product.
M1: for forming the correct algebraic equation for the sum ie., $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$.
A1: for the correct sum $=-\frac{49}{12}$ oe
Note: $\quad a^{2}+b^{2}=\frac{49}{9}$
B1: for product of roots $=1$ (You may not see this explicitly, but can be implied if their constant in their formed equation
M1: for forming an equation using their sum and product
For this mark you must see $x^{2}+(-$ sum $) x+(+$ product $) \quad(=0)$
A1: for the correct equation as shown including $=\mathbf{0}$ Accept equivalent integer values, eg
$24 x^{2}+98 x+24=0$
(ii)

B1: for the sum of roots $=5$
M1: for the algebraic product of roots. Multiplying out, simplifying to a minimally acceptable $m(\alpha+\beta)^{2}+n \alpha \beta$ where $m \neq 0$ and $\mathrm{n} \neq 0$
A1: for the product $=\frac{38}{9}$
M1: for forming an equation using their sum and product
A1: for the correct equation as shown $=\mathbf{0}$. If $=\mathbf{0}$ missing in part (i) do not penalise here again. Accept equivalent integer values.
(b)

M1: for an attempt to complete the square. For this mark, they must take out 3 as the common factor in the term in $x^{2}$ and $x$ (ignore the constant), and then complete the square (see General Guidance for minimally acceptable attempt)
A1: for two of $A, B$ or $C$ correct
A1: for $A, B$ and $C$ correct
ALT
M1: for $A(x+B)^{2}+C=A x^{2}+2 A B x+B^{2}+C \Rightarrow A x^{2}+2 A B x+B^{2}+C \equiv 3 x^{2}-5 x-4$
Must lead to values for $A, B$ and $C$ for this mark $\left(\Rightarrow A=3, B=-\frac{5}{6}, C=-\frac{73}{12}\right)$
A1: for two of $A, B$ or $C$ correct
A1: for $A, B$ and $C$ correct
(c)

M1: for $3\left(x-\frac{5}{6}\right)^{2}-\frac{73}{12}=-8 \Rightarrow 3\left(x-\frac{5}{6}\right)^{2}=-\frac{23}{12}$ or using $b^{2}-4 a c$ on the given $\mathrm{f}(x)+8=0$
A1: for a correct conclusion of eg., cannot find square root of negative number hence no real roots, or $b^{2}-4 a c<0$ hence no real roots. They must substitute correct values into $b^{2}-4 a c$.
This A mark is cso

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 10 (a) | $C$ is $(3,2)$ <br> Or use ratio formula (correct) on either coord Both coords correct | M1 either correct A1 both (2) |
| (b) | $\operatorname{Grad} A B=\frac{-2-4}{5-2}=-2$ <br> $\operatorname{Grad} D C=\frac{2-1}{3-1}=\frac{1}{2}$ | B1 B1 |
|  | $-2 \times \frac{1}{2}=-1 \quad \therefore$ perpendicular | B1 <br> (3) |
| (c) | $\begin{aligned} & y-1=\frac{1}{2}(x-1) \\ & 2 y=x+1 \end{aligned}$ | $\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$ (2) |
| (d)(e) | $E$ is $(5,3)$ | M1A1 (2) |
|  | $A B=\sqrt{3^{2}+6^{2}}=3 \sqrt{5}$ | M1 either |
| (e) | $D E=\sqrt{4^{2}+2^{2}}=2 \sqrt{5} \quad$ or $C D=\sqrt{5}$ | A1 both |
|  | $\text { Area of kite }=\frac{1}{2} A B \times D E=\frac{1}{2} \times 3 \sqrt{5} \times 2 \sqrt{5}=15 \text { or } 2 \times \frac{1}{2} \times 3 \sqrt{5} \times \sqrt{5}=15$ | M1A1 <br> (4) |
|  | Alt: Determinant method: $\text { Area }=\frac{1}{2}\left\|\begin{array}{ccccc} 2 & 1 & 5 & 5 & 2 \\ 4 & 1 & -2 & 3 & 4 \end{array}\right\|$ | M1A1 |
|  | $=\frac{1}{2}(2-2+15+20-(6-10+5+4))=15$ | M1A1 <br> (4) <br> [13] |

## Notes

(a)

M1: for either correct $x$ coordinate or $y$ coordinate
A1: for both coordinates correct
Note: If you see either coord coming from an incorrect method M0
(b)

B1: for finding the gradient of $A B$
B1: for finding the gradient of $D C$
Do not accept vectors for gradients.
B 1 : for using the perpendicular rule to show that $A B$ and $D C$ are perpendicular, or stating that for gradients to be perpendicular, one must be the negative reciprocal of the other, with a conclusion.
eg., the negative reciprocal of -2 is $\frac{1}{2}$
Allow incorrect $A B$ and $C D$ here provided they are negatives reciprocals of each other.
(c)

M1: for using the formula with coordinates $(1,1)$ or $(3,2)$ and a gradient of $\frac{1}{2}$ or their gradient of
$D C$ from (b) to write down the equation of the line. If they use $y=m x+c$ they must substitute $x$
and $y$
correctly, their gradient of $D C$ from (b) and find $c$
A1: for the correct equation in the correct form $2 y=x+1$.
(d)

M1: for either correct $x$ coordinate or $y$ coordinate
A1: for both coordinates correct
(e)

## Method 1

M1: for finding either the length of $A B(=3 \sqrt{5})$ or the length of $D E$ or $C D$ (using the given cords for $D$ and their $E$. The Pythagoras must be correct if their $E$ is incorrect.
A1: for both correct lengths of $A B$ and $D E$ or $C D$.
M1: for area of kite $\frac{1}{2} \times{ }^{\prime}$ their' $A B \times{ }^{\prime}$ their' $D E$
A1: for 15 (units ${ }^{2}$ )

## Method 2

M1: for using the CORRECT formula for determinants with the given $A, D, B$, and 'their $E$ '
A1: for a fully correct formula with correct coordinates
M1: for a correct calculation with the given $A, D, B$, and 'their $E$ '
A1: for 15 (units ${ }^{2}$ )
Method 3 (General marking guidance for using a combination of areas)
M1: for attempting to calculate each individual area
A1: for correct individual areas (four triangles will be) 5, 5, 2.5, 2,5
Large rectangle (24) and 3 triangles $(6,1.5,1.5)$
M1: for a statement of the total area
A1: for 15 (units ${ }^{2}$ )

