Pearson Edexcel

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE

In Chemistry (4CH0) Paper 2C

Edexcel and BTEC Qualifications

Abstract

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4CHO_2C_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
www.dynamicpapers.com

Question number	Answer		Notes	Marks
1	Name of apparatus	Letter		4
	beaker	D		
	burette	A		
	measuring cylinder	C		
	pipette	F		

Question number	Answer	Notes	Marks
$2 \text { (a) }$ (i) (ii) (iii)	(contain) same number of protons/37 protons (contain) different numbers of neutrons / 87 has two more neutrons / 85 has two fewer neutrons / 85 has 48 neutrons but 87 has 50 neutrons A (1)	IGNORE same atomic number REJECT reference to electrons IGNORE reference to mass number	1 1 1
(b)	$\begin{array}{ll} \text { M1 } & (0.722 \times 85)+0.278 \times 87) \text { OR } \\ & {[(72.2 \times 85)+(27.8 \times 87)] / 100 \text { OR } 85.556} \\ \text { M2 } & 85.6 \end{array}$	85.5 scores 1 Correct answer with no working scores 2	2

Question number	Answer	Notes	Marks
3 (a) (i) (ii)	(thermal) decomposition M1 (bubble through/add to) limewater M2 turns milky	IGNORE endothermic ACCEPT cloudy / turbid / white precipitate M2 DEP M1	1 2
(b) (i) (ii)	gas(es)/CO2/H2O/steam/water given off /formed/evolved all of the NaHCO_{3} has decomposed/reacted	ALLOW the reaction has finished ALLOW all the CO_{2} / water/ steam $/ \mathrm{H}_{2} \mathrm{O}$ /gas(es) has been given off	1 1

Question number	Answer	Notes	Marks
4 (a)	heat (energy) is given out/lost (to the surroundings) /heat is transferred to the surroundings	Not just energy ACCEPT thermal energy is given out ALLOW heat (energy) is produced/released	1
(b)	A		1
(c)			1
(d)	M1 has giant (ionic structure)/giant (ionic lattice) M2 strong (electrostatic) forces/strong attraction M3 between (oppositely charged) ions M4 large amount of (thermal/heat) energy required to overcome the forces/attraction	ALLOW strong bonds ACCEPT large amount of (thermal/heat) energy required to break the bonds IGNORE more energy	4

		Any reference to covalent bonds / metallic bonding/ intermolecular forces max 1 mark	

Question number	Answer	Notes	Marks
5 (a)	Mass of sodium hydrogencarbonate in g Initial temperature in ${ }^{\circ} \mathrm{C}$ Lowest temperature reached in ${ }^{\circ} \mathrm{C}$ Decrease in temperature in ${ }^{\circ} \mathrm{C}$ 0.5 25 22 3 1.0 24 20 4 1.5 23 18 5 2.0 23 18 5 M1 all four temperature readings correct M2 all four calculations of decrease in temperature correct	Calculations in M2 CSQ on values given in M1	2
(b) (i)		M1 \& M2 All five points plotted correctly = 2 Deduct one mark for each incorrectly plotted point M3 both lines drawn correctly with the aid of a ruler First line does not need to pass through origin and IGNORE extrapolation	3

Question number	Answer	Notes	Marks
6 (a)	M1 correct repeat unit with single bond between carbon atoms M2 extension bonds, brackets and n included	Accept n anywhere after brackets but not before Extension bonds do not need to go out of brackets M2 DEP on M1	2
(b)	the polymer is the only product (of the reaction) / no small molecule is produced (as well as the polymer)	ALLOW only one type of monomer	1

(c) (i)	Any two from: M1 strong so does not break/so can be reused M2 low density so not heavy (when it contains the shopping) M3 non-toxic so does not poison food/safe to use with food M4 waterproof so contents do not get wet/bag does not tear when wet M5 flexible so fits around the shopping M6 can be recycled so saves resources M7 transparent so can see contents of bag	IGNORE light ALLOW odourless so does not taint food IGNORE references to cost IGNORE non-biodegradable If two correct properties with no links allow 1 mark	2

(c) (ii)	landfill: sites get filled up/takes up (more) land burning: produces toxic /poisonous / greenhouse gas	ALLOW accumulates (in landfill as non-biodegradable/does not breakdown/decompose) IGNORE can produce methane which is a greenhouse gas IGNORE reference to harm to wildlife /habitats/ environment/visual pollution/unpleasant smell / noise pollution/ toxic leaching ACCEPT produces CO_{2} which is a greenhouse gas ACCEPT could produce CO which is poisonous/reduces blood capacity to carry oxygen IGNORE produces harmful gas(es) /air pollution	2

Question number	Answer	Notes	Marks
7	M1 ions cannot flow/move when solid	ACCEPT ions are in fixed positions	2
	M2 ions can flow/move when liquid/molten	If reference to electrons cannot/can move then 0	
	Mg $^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}$	IGNORE not inert	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 8 (a) (i) \& ```
M1 (total) vol \(\left(\mathrm{CO}_{2}\right)=480 \times 140\) OR \(67200 \mathrm{dm}^{3}\)
M2 \(n\left[\mathrm{CO}_{2}\right]=(67200 \div 24)=2800(\mathrm{~mol})\)
OR
M1 (per person) \(n\left[\mathrm{CO}_{2}\right]=480 \div 24\) OR \(20(\mathrm{~mol})\)
\(\mathbf{M 2}\) (total) \(n\left[\mathrm{CO}_{2}\right]=(20 \times 140)=2800(\mathrm{~mol})\)
M1 mass of \(\mathrm{Na}_{2} \mathrm{O}_{2}=2800 \times 78(.0)\) OR 218400 (g)
OR M2 from part (i) \(\times 78(.0)\)
M2 218(.4) (kg)
``` \& \begin{tabular}{l}
Mark CQ on M1 \\
Mark CQ on M1 \\
Mark CQ on M1 \\
ACCEPT any number of sig figs except 1
\end{tabular} \& 2

2 <br>
\hline
\end{tabular}

(b)

M1 (it/Li $\mathrm{Li}_{2} \mathrm{O}_{2}$ ) absorbs/reacts with more $\mathrm{CO}_{2}$ (per mole/per gram)

ORA
ACCEPT only 1
mol $\mathrm{Li}_{2} \mathrm{O}_{2}$ needed per mol of $\mathrm{CO}_{2}$,
but 2 mol of LiOH needed per mol of $\mathrm{CO}_{2}$

Answers in either order
M2 (it/ $/ \mathrm{Li}_{2} \mathrm{O}_{2}$ ) produces oxygen

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 (a) (i) <br> (ii) | M1 ( $\rightleftharpoons$ ) (reaction is) reversible <br> M2 $(\Delta H)$ enthalpy change (of reaction) <br> phosphoric acid | IGNORE references to equilibrium <br> ACCEPT heat (energy) change NOT just energy change <br> ALLOW $\mathrm{H}_{3} \mathrm{PO}_{4}$ | 2 |
| (b) (i) | M1 (yield/it/amount of ethanol) increases <br> M2 because (forward) reaction is exothermic | IGNORE equilibrium shifts to the right <br> ACCEPT backward reaction is endothermic <br> IGNORE because reaction moves in exothermic direction <br> IGNORE references to rate <br> IGNORE references to Le Chatelier's principle, eg lower temperature favours the exothermic reaction / equilibrium position shifts to raise the temperature <br> M2 DEP M1 | 2 |

(ii)

M1 (yield/it/amount of ethanol) decreases

M2 because there are more moles/molecules (of gas) on the left / ORA

GNORE equilibrium shifts to the left

ALLOW particles
REJECT atoms

ACCEPT there are more
moles/molecules of reactants

IGNORE reaction moves to the side with the larger number of moles/molecules

IGNORE references to rate

IGNORE references to Le Chatelier's principle, eg lower pressure favours the reaction that produces the larger number of moles (of gas) / equilibrium position shifts to increase the pressure

M2 DEP M1

| (c) (i) | dehydration | ALLOW (thermal) <br> decomposition | 1 |
| :---: | :--- | :--- | :---: |
| (ii)crude oil is a finite resource / crude oil will <br> eventually run out | ALLOW crude oil non- <br> renewable <br> IGNORE reference to cost | 1 |  |


| Question <br> number | Answer | Notes | Marks |
| :---: | :--- | :--- | :--- | :---: |
| 10 (a) (i) | M1 lanthanum |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| (b) | M1 (samarium) ions in layers/rows/planes/sheets <br> M2 slide/slip (over each other) <br> M3 delocalised electrons OR sea of electrons <br> M4 (can) flow/travel/move (through structure) / are mobile (when voltage/pd is applied) | ACCEPT atoms/cations/particles for ions <br> Reject molecules <br> Allow OWTTE, eg flow/shift/roll/move <br> M2 DEP on mention of EITHER layers or equivalent <br> OR mention of ions or equivalent <br> Do not award M2 if molecules/protons/electrons/nuclei in place of ions etc <br> If reference to ionic bonding / covalent bonding /molecules / intermolecular forces, no M1 or M2 <br> Not just electrons IGNORE free electrons <br> IGNORE carry charge/current M4 DEP on M3 or mention of electrons If reference to ions moving no M3 or M4 | 4 |

