www.dynamicpapers.com

Please check the examination det	tails below	before entering yo	ur candidate info	mation
Candidate surname		Othe	r names	
Pearson Edexcel International GCSE	Centre	e Number	Candida	te Number
Wednesday 9) Ja	nuary	2019	
Morning (Time: 2 hours)		Paper Referer	nce 4CH0/1C	4SC0/1C
Chemistry Unit: 4CH0 Science (Double Awar Paper: 1C	d) 4SC	: 0		
You must have: Calculator, ruler				Total Marks

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P55714A
©2019 Pearson Education Ltd.
1/1/1/1/1/1/

0	Helium 2	20 Neon 10	Argon	Krypton 36	Xenon Xenon 54	Radon 86	
7		19 Fluorine 9	35.5 Chlorine	80 Bromine 35	127 Odine 53	210 At Astatine 85	
ဖ		Oxygen 8	Solifur 16	Selenium	128 Te Tellurium 52	Potentium Potentium 84	
ß		Nitrogen 7	31 P Phosphorus 15	75 As Arsenic 33	Sb Antimony 51	209 Bismuth 83	
4		12 Carbon 6	Silicon	73 Ge Germanium 32	et 있 같	207 Pb Lead 82	
ო		11 Boron 5	27 Al Atuminium 13	70 Gallium 31	115 In Indium 49	204 Ti Thallium 81	
			_	65 Zinc 30	Cd Cadmium 48	201 Hg Mercury 80	
				63.5 Cu Copper 29	Ag Silver 47	Au Gold 79	
				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
				59 Cobalt 27	103 Rhodium 45	192 	
				56 Fe Iron 26	101 Ru Ruthenium 44	190 Osmium 76	
Group	Hydrogen			55 Mn Manganese 25	99 Tc Technetium 43	186 Re Rhenium 75	
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
				51 V Vanadium 23	93 Niobium 41	181 Talantalum 73	
				48 Titanium 22		179 Hf Hafnium 72	
					89 V ttrium 39	139 La Lanthanum 57	Actinium 89
α		9 Beryllium 4	Mg Magnesium 12	Calcium 20	88 Strontium 38	137 Barium Se	Radium 88
-		7 Lithium 3	Na Sodium	39 K Potassium 19	86 Rb Hubidium 37	133 Cs Caesium 55	223 Fr Francium 87
G.	-	N	က	4	ည	9	

Key

Relative atomic mass
Symbol Name
Atomic number

THE PERIODIC TABLE

Answer ALL questions.

- 1 The three states of matter are solid, liquid and gas.
 - (a) Substances can be changed from one state to another.

The box lists some words relating to changes of state.

condensing cooling evaporation
heating melting sublimation

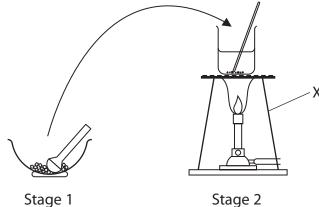
Complete the table by giving the correct word from the box for each change of state.

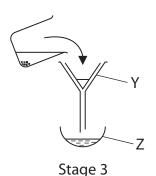
Each word may be used once, more than once, or not at all.

(3)

Change of state	Name of change
from solid to liquid	
from liquid to gas	
from solid to gas	

(b) The particles in a solid are closely packed, arranged in a regular pattern and vibrate about a fixed position.


Describe the arrangement and movement of the particles in a gas.


(3)

(Total for Question 1 = 6 marks)

2 Rock salt is a mixture of the soluble salt, sodium chloride, and some insoluble impurities.

The diagram shows the first three stages of a method used to obtain pure sodium chloride from rock salt.

Stage 2 crushed rock salt

added to water

(a) Name the pieces of apparatus labelled X, Y and Z

rock salt crushed

(3)

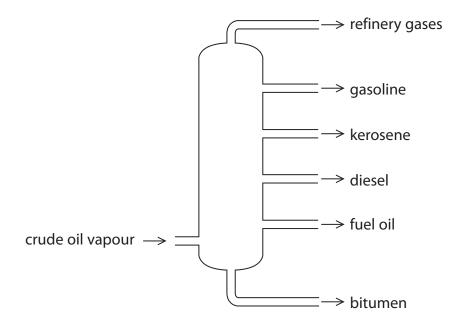
(2)

Υ.....

(b) (i) State why the mixture of rock salt and water is warmed and stirred in stage 2.

(ii) What is water in stage 2?

- A a residue
- **B** a solute
- C a solution
- **D** a solvent



(c) (i) E	explain what happens to the impurities in stage 3.	(2)
(ii) V	What is the liquid collected at the end of stage 3?	(1)
⊠ A	A a residue	
× B	3 a solute	
\boxtimes C	a solution	
	a solvent	
	(Total for Question 2 = 9 mark	ks)

BLANK PAGE

- **3** Crude oil is a mixture of hydrocarbons.
 - (a) The diagram shows a column used in the industrial process to separate crude oil.

(i) Name the industrial process used to separate crude oil.

(1)

(ii) State a use for kerosene and a use for bitumen.

(2)

kerosene

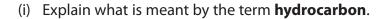
(b) A molecule of the hydrocarbon eicosane has the formula $C_{20}H_{42}$

(i) Explain which homologous series eicosane belongs to.

(2)

(ii) Name a catalyst used in the industrial cracking of eicosane.

(1)


(iii) In a possible reaction for the cracking of eicosane, the products are three molecules of C₁H_s and one molecule of another hydrocarbon.

Complete the equation for this reaction.

(1)

$$C_{20}H_{42} \rightarrow 3C_4H_8 + \dots$$

(c) Hydrocarbons can be saturated or unsaturated.

(2)

(ii) State what is meant by a hydrocarbon being saturated.

(iii) Describe a chemical test used to distinguish between unsaturated and saturated hydrocarbons.	(3)
test	
results	

(d) The unsaturated hydrocarbon C_4H_8 has several isomers.

The displayed formula for one of these isomers is

(i) Name this isomer.

(1)

(ii) Draw the displayed formula of another isomer of ${\rm C_4H_8}$

(1)

(Total for Question 3 = 15 marks)

- 4 (a) (i) Explain what is meant by the term covalent bonding.

 (2)
 - (ii) Draw a dot and cross diagram to show the bonding in a molecule of ethene, $\rm C_2H_4$ Show only the outer electrons.

(2)

(b) Substances A and B are covalently bonded and have simple molecular structures.

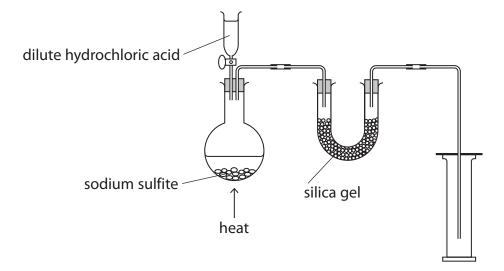
The table gives the boiling points for substances A and B.

Substance	Boiling point in °C
А	-42
В	-0.5

(i) Explain why substances with simple molecular structures have low boiling p	ooints. (2)
(ii) Suggest why the boiling point of B is higher than the boiling point of A.	(1)
(iii) Substance B has the empirical formula $\rm C_2H_5$ and an $M_{\rm r}$ value of 58. Determine the molecular formula of substance B.	(2)
(c) Substance X is also covalently bonded, but its structure is different from that of It has a boiling point of 2230°C.	A and B.
Explain, in terms of its structure, why X has such a high boiling point.	(2)
(Total for Question 4 = 11 r	marks)

- **5** Hot, molten sulfur reacts with oxygen to form sulfur dioxide gas.
 - (a) Describe what is seen when a sample of hot, molten sulfur is lowered into a gas jar containing oxygen.

(1)


(b) Sulfur dioxide gas is formed during the reaction between dilute hydrochloric acid and sodium sulfite, Na_2SO_3

A salt and water are also formed.

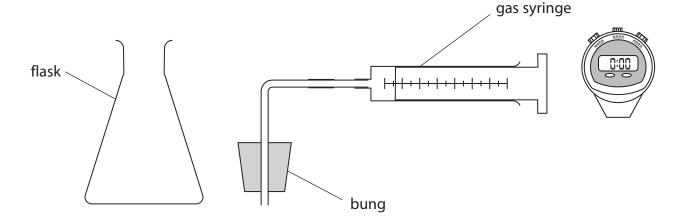
Write a chemical equation for this reaction.

(2)

(c) This apparatus can be used to collect a pure, dry sample of sulfur dioxide gas.

(i) Suggest the purpose of the silica gel.

(ii) Name the method used in the diagram to collect the sulfur dioxide gas.	(1)
(iii) State the physical property of sulfur dioxide gas that allows it to be collected in this way.	(1)
(d) A sample of sulfur dioxide reacts with water to form an acidic solution. (i) Identify the acid formed.	(1)
(ii) A few drops of methyl orange indicator are added to this solution. State the colour of the indicator in this solution.	(1)
(iii) Give the formula of the ion responsible for this colour.	(1)
(iv) An alkali is then added to neutralise the acid. State the final colour of the indicator.	(1)
(Total for Question 5 = 10 m	arks)


- **6** A student investigates the rate of the reaction between magnesium ribbon and dilute hydrochloric acid. The products are magnesium chloride and hydrogen.
 - (a) The equation for the reaction is

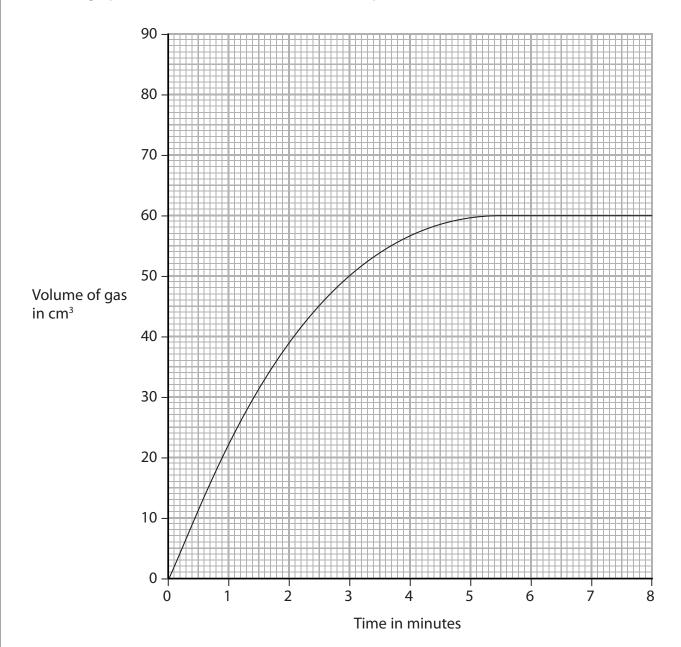
$$Mg(....) + 2HCl(...) \rightarrow MgCl_2(...) + H_2(...)$$

Complete the equation by adding the state symbols.

(1)

(b) The student uses these pieces of apparatus in his experiment.

This is his method.


- clean a strip of magnesium ribbon to remove the oxide layer
- pour 50 cm³ of 0.5 mol/dm³ hydrochloric acid into the flask
- put the clean magnesium ribbon into the flask
- quickly put the bung into the flask to connect the gas syringe
- record the volume of gas in the syringe every minute for eight minutes

(i) Sugges	st why the student cleans the magnesium ribbon to remo	ve the oxide layer. (1)
(ii) Sugge:	st why the student needs to put the bung into the flask q	uickly. (1)
(iii) Sugge:	st when the student should start the stop watch.	(1)

(c) The graph shows the results of the student's experiment.

(i) Use the graph to find the volume of gas in the syringe at one minute.

Show on the graph how you obtained your answer.

(2)

volume = cm³

(ii) Use the graph to find the time when the reaction stops.

(1)

time = minutes

(iii) Suggest two possible reasons why the reaction stops. 1	(2)
2	
(iv) Explain when the rate of reaction is greatest.	(2)
(d) Explain how increasing the concentration of the hydrochloric acid affects the of the reaction with magnesium.	rate
Refer to the particle collision theory in your answer.	(4)

- 7 In the Periodic Table, the vertical columns of elements are called groups.
 - (a) The table gives some information about the first four elements in Group 0.

Element	Relative atomic mass (A _r)	Boiling point in °C
helium	4	-269
neon	20	-246
argon	40	-186
krypton	84	-153

(i) State the relationship between the relative atomic mass and the boiling point of these elements.

(1)

(ii) State why the elements in Group 0 are unreactive.

(1)

(b) The elements in Group 7 of the Periodic Table are called halogens.

State why the halogens have similar chemical properties.

Refer to electronic configurations in your answer.

(i) When chlorine is added to sodium bromide solution, chlorine displaces brom	tions. nine.
Write a chemical equation for this reaction.	(1)
(ii) State the colour of the solution formed in this reaction.	(1)
(iii) Explain whether or not a reaction takes place when bromine water is added t sodium chloride solution.	(2)
(iv) The displacement reaction between potassium iodide and chlorine can be represented by the ionic equation	
$2l^{-} + Cl_{2} \rightarrow l_{2} + 2Cl^{-}$	
Explain why this is described as a redox reaction.	(2)

(i) Writ	e the chemi	ical equation for this rea	oction.	(1)
(ii) Som	ne methylbe	enzene is poured into be	aker A.	
Som	ne water is p	ooured into beaker B.		
Hyd	rogen chlor	ride gas is dissolved in ea	ach liquid.	
A se	parate piec	e of dry blue litmus pap	er is dipped into each solution.	
Evol	disso	A hydrogen chloride blved in methylbenzene	B hydrogen chloride dissolved in water	
• 1	disso lain what ha the piece of	hydrogen chloride olved in methylbenzene	hydrogen chloride dissolved in water to beaker A	(4)
• 1	disso lain what ha the piece of	hydrogen chloride olved in methylbenzene appens to filtmus paper dipped in	hydrogen chloride dissolved in water to beaker A	(4)
• 1	disso lain what ha the piece of	hydrogen chloride olved in methylbenzene appens to filtmus paper dipped in	hydrogen chloride dissolved in water to beaker A	(4)
• 1	disso lain what ha the piece of	hydrogen chloride olved in methylbenzene appens to filtmus paper dipped in	hydrogen chloride dissolved in water to beaker A	(4)
• 1	disso lain what ha the piece of	hydrogen chloride olved in methylbenzene appens to filtmus paper dipped in	hydrogen chloride dissolved in water to beaker A	(4)
aker A	disso lain what ha the piece of the piece of	hydrogen chloride blved in methylbenzene appens to f litmus paper dipped in f litmus paper dipped in	hydrogen chloride dissolved in water to beaker A	
aker A	disso lain what ha the piece of the piece of	hydrogen chloride blved in methylbenzene appens to f litmus paper dipped in f litmus paper dipped in	hydrogen chloride dissolved in water ato beaker A ato beaker B.	
aker A	disso lain what ha the piece of the piece of	hydrogen chloride blved in methylbenzene appens to f litmus paper dipped in f litmus paper dipped in	hydrogen chloride dissolved in water	

(Total for Question 7 = 14 marks)

8 The table shows information about the effect of adding sodium hydroxide solution to solutions containing zinc ions, calcium ions or aluminium ions.

lon in solution	Effect of adding a few drops of sodium hydroxide solution	Effect of adding excess sodium hydroxide solution
zinc, Zn ²⁺	white precipitate forms	white precipitate disappears
calcium, Ca ²⁺	white precipitate forms	white precipitate remains
aluminium, Al ³⁺	white precipitate forms	white precipitate disappears

- (a) A student is provided with a sample of a white solid.
 - (i) The student dissolves some of the white solid in water and then adds a few drops of sodium hydroxide solution. A white precipitate forms.

She concludes that the sample contains calcium ions.

_							
Explain	whether	the st	udent's	conc	lusion	is ۱	/alid

	(ii) Give a different test to show that the white solid contains calcium ions.	(2)
test	(ii) Give a different test to show that the white solid contains calcium ions.	(2)

(2)

(b) A hydrated salt has the formula AB₂•xH₂O

A is a positive ion and B is a negative ion.

When the hydrated salt is heated, this reaction occurs.

$$AB_{2}$$
, $xH_{2}O \rightarrow AB_{2} + xH_{2}O$

A scientist heats a sample of the hydrated salt until all the water has been lost.

She records the mass of the salt before and after heating.

The table shows her results.

Mass of hydrated salt	Mass of salt after heating
6.1 g	5.2 g

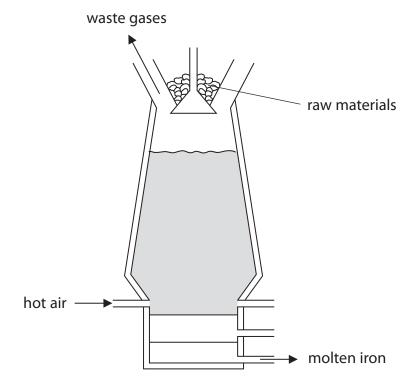
(i) Describe how the scientist could make sure that all the water has been lost.

(2)

(ii) Use the scientist's results to find the value of x in AB₂.xH₂O

$$[M_r \text{ of AB}_2 = 208 \qquad M_r \text{ of H}_2 \text{O} = 18]$$

(4)


v –

The test shows that the negative ions are chloride ions. (i) Calculate the relative atomic mass of metal A using the formula of the anhydrous salt, AB ₂ relative atomic mass of metal A using the formula of the anhydrous salt, AB ₂	and $M_{_{\rm f}}$ value
(i) Calculate the relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$ relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$	·
(i) Calculate the relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$ relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$	·
(i) Calculate the relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$ relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$	·
(i) Calculate the relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$ relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$	·
(i) Calculate the relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$ relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$	·
(i) Calculate the relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$ relative atomic mass of metal A using the formula of the anhydrous salt, ${\rm AB}_2$	·
of the anhydrous salt, AB ₂ relative atomic ma	·
	(1)
(ii) Identify metal A.	ass of A =
	(1)
(Total for Quest	ion 8 = 15 marks)

- **9** Some metals can be obtained by heating their oxides with carbon.
 - (a) The diagram shows a blast furnace used to produce iron from iron ore.

(i) Give the name of an iron ore.

(1)

(ii) Explain the role of the hot air in the furnace.

(2)

(iii) Iron(III) oxide can be reduced by carbon.

Balance the equation for this reaction.

.....
$$Fe_2O_3$$
 + $C \rightarrow$ Fe + CO_2

(iv) Limestone is one of the raw materials added to the blast furnace.	
Explain how limestone removes the impurity, silica (SiO ₂), from the furnace.	
You may use equations to help your answer.	
	(3)
(b) (i) State why aluminium cannot be produced by heating its oxide with carbon.	
(b) (i) State will aldinimidiff carmot be produced by fleating its oxide with carbon.	(1)
(ii) Describe how aluminium is extracted from purified aluminium exide	
(ii) Describe how aluminium is extracted from purified aluminium oxide.	(4)
(Total for Question 9 = 12 m	arks)

10 A student does a titration to find the concentration of a solution of aqueous ammonia.

He uses this method.

- use a pipette to add 25.0 cm³ samples of the solution into a conical flask
- add a few drops of indicator
- add sulfuric acid from a burette until the indicator changes colour permanently
- repeat the titration three more times
- (a) (i) State what the student should do while adding the acid, to make sure that the indicator changes colour permanently.

(1)

The table shows the student's titration results.

Volume of acid added in cm ³	23.40	23.15	22.95	23.10
Concordant results				

Concordant results are volumes within 0.20 cm³ of each other.

(ii) Place ticks (\checkmark) in the table to show which results are concordant.

(1)

(iii) Use the concordant results to calculate the average (mean) volume of acid added.

(2)

average volumecm³

(b) The table shows the titration results of another student.

Volume of aqueous ammonia used in cm ³	25.0
Concentration of sulfuric acid in mol/dm ³	0.0800
Average volume of sulfuric acid added from burette in cm ³	22.70

The equation for the reaction is

$$H_2SO_4 + 2NH_3 \rightarrow (NH_4)_2SO_4$$

(i) Calculate the amount, in moles, of $\rm H_2SO_4$ in 22.70 cm 3 of the sulfuric acid.

(2)

amount of
$$H_2SO_4 = \dots mol$$

(ii) Calculate the amount, in moles, of $\mathrm{NH}_{_{3}}$ in the aqueous ammonia.

(1)

(iii) Calculate the concentration, in mol/dm³, of the aqueous ammonia.

(2)

 $concentration \ of \ aqueous \ ammonia \ = \underline{\hspace{1cm}} mol/dm^3$

(c) Describe how you could use the method of crystallisation to of ammonium sulfate from a dilute solution of ammonium s	o obtain a pure, dry sample
of difficulties sandte from a difface solution of difficulties	(4)
(Total for	Question 10 = 13 marks)

TOTAL FOR PAPER = 120 MARKS