

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education (9–1)

CHEMISTRY 0971/22

Paper 2 Multiple Choice (Extended) October/November 2018

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

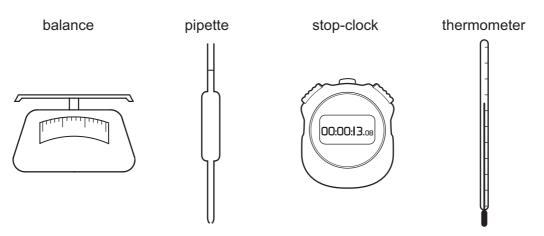
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.


1 Oxygen and fluorine are gaseous elements next to each other in the Periodic Table.

Under the same conditions of temperature and pressure, oxygen diffuses1..... than fluorine because its2..... is less than that of fluorine.

Which words correctly complete gaps 1 and 2?

	1	2	
A faster mole		molecular mass	
В	faster	reactivity	
С	slower	molecular mass	
D	slower	reactivity	

2 The diagrams show four pieces of laboratory equipment.

Which equipment is essential to find out if dissolving a salt in water is an exothermic process?

	balance	pipette	stop-clock	thermometer
Α	X	X	X	✓
В	✓	X	x	✓
С	X	✓	x	✓
D	✓	X	✓	X

3 How many neutrons are present in the atom $^{45}_{21}X$?

A 21

B 24

C 45

D 66

4 Two naturally occurring isotopes of oxygen are ¹⁶O and ¹⁷O.

Which statement is correct?

- **A** Both isotopes react with iron to form rust.
- **B** Neither isotope reacts with iron to form rust.
- C Only ¹⁶O reacts with iron to form rust.
- **D** Only ¹⁷O reacts with iron to form rust.
- 5 How many electrons are used to form covalent bonds in a molecule of methanol, CH₃OH?
 - **A** 5
- **B** 6
- **C** 8
- **D** 10
- 6 Potassium bromide and methanol are both compounds.

Their melting points are different.

Which row is correct?

	substance with the higher melting point	reason why the melting points are different
A	methanol	the attractive forces between oppositely charged ions is greater than the attractive forces between molecules
В	methanol	the attractive forces between molecules is greater than the attractive forces between oppositely charged ions
С	potassium bromide	the attractive forces between oppositely charged ions is greater than the attractive forces between molecules
D	potassium bromide	the attractive forces between molecules is greater than the attractive forces between oppositely charged ions

- 7 Which gas sample contains the smallest number of molecules?
 - A 4g of helium
 - **B** 16 g of oxygen
 - C 28 g of carbon monoxide
 - **D** 28 g of nitrogen

8 The equation for the reaction between calcium carbonate and dilute nitric acid is shown.

$$CaCO_3(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(l)$$

25 g of calcium carbonate is reacted with an excess of dilute nitric acid.

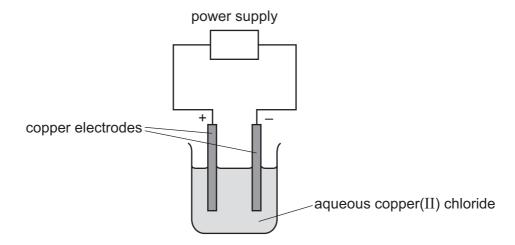
Which mass of calcium nitrate and which volume of carbon dioxide is produced at room temperature and pressure?

	mass of calcium nitrate/g	volume of carbon dioxide/dm³
Α	29	6
В	29	12
С	41	6
D	41	12

9 The formulae of some ions are shown.

positive ion	negative ion
Ti ⁴⁺	PO ₄ ³⁻
Al ³⁺	SO ₄ ²⁻
Mg ²⁺	NO ₃ ⁻
K⁺	C1⁻

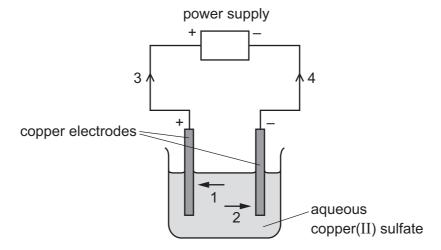
Which formula is **not** correct?


 \mathbf{A} A $l_3(SO_4)_2$

B K₃PO₄

 \mathbf{C} Mg(NO₃)₂

D TiC l_4


 $\textbf{10} \quad \text{Concentrated aqueous copper} (II) \text{ chloride is electrolysed using copper electrodes as shown}.$

What happens to the mass of each electrode during this process?

	positive electrode	negative electrode	
Α	decreases	decreases	
В	decreases	increases	
С	increases	decreases	
D	increases	increases	

11 The diagram shows a circuit used to electrolyse aqueous copper(II) sulfate.

Which arrows indicate the movement of the copper ions in the electrolyte and of the electrons in the external circuit?

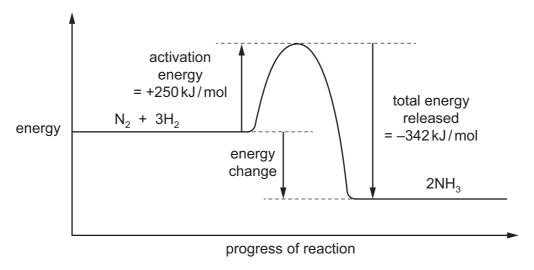
	copper ions	electrons
Α	1	3
В	1	4
С	2	3
D	2	4

12 Hydrogen peroxide, H–O–O–H, decomposes to form water and oxygen.

$$2H_2O_2(g) \rightarrow 2H_2O(g) + O_2(g)$$

The bond energies are shown in the table. The reaction is exothermic.

bond	bond energy in kJ/mol
O–H	+460
0–0	+150
O=O	+496


What is the energy change for the reaction?

A -346 kJ/mol **B** -196 kJ/mol **C** +196 kJ/mol **D** +346 kJ/mol

13 The equation for the formation of ammonia is shown.

$$N_2 + 3H_2 \rightarrow 2NH_3$$

The energy level diagram for the reaction is shown.

What is the energy change for the reaction?

- **A** -592 kJ/mol
- **B** -92 kJ/mol
- C +92 kJ/mol
- D +592 kJ/mol
- 14 The rate of reaction between magnesium ribbon and 2 mol/dm³ hydrochloric acid at 25 °C to produce hydrogen gas is measured.

In another experiment, either the concentration of the hydrochloric acid or the temperature is changed. All other conditions are kept the same.

Which conditions increase the rate of reaction?

- A 1 mol/dm³ hydrochloric acid at 25 °C
- B 2 mol/dm³ hydrochloric acid at 10 °C
- C 2 mol/dm³ hydrochloric acid at 20 °C
- **D** 3 mol/dm³ hydrochloric acid at 25 °C

15 Methanol is prepared by the reversible reaction shown.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The forward reaction is exothermic.

Which conditions produce the highest equilibrium yield of methanol?

temperature		pressure	
A high		high	
B high		low	
С	low high		
D	low	low	

16 The thermite reaction can be used to produce iron from iron(III) oxide.

The equation for the reaction is shown.

$$2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$$

Which statements about this reaction are correct?

- 1 Aluminium is the oxidising agent.
- 2 Aluminium is less reactive than iron.
- 3 Electrons are transferred from aluminium to iron.
- 4 The iron in the iron(III) oxide is reduced.

A 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

17 In which row are the oxides correctly identified?

	acidic	basic
Α	magnesium oxide, calcium oxide	sulfur dioxide, carbon dioxide
В	magnesium oxide, sulfur dioxide	carbon dioxide, calcium oxide
С	c sulfur dioxide, carbon dioxide calcium oxide, magnesium	
D	sulfur dioxide, magnesium oxide	calcium oxide, carbon dioxide

18 When dilute sulfuric acid is added to solid X, a colourless solution is formed and a gas is produced.

What is X?

- A copper(II) oxide
- B sodium oxide
- **C** copper(II) carbonate
- **D** sodium carbonate
- **19** A few drops of methyl orange are added to a reaction mixture.

During the reaction, a gas is produced and the methyl orange turns from red to orange.

What are the reactants?

- A aqueous sodium hydroxide and ammonium chloride
- **B** aqueous sodium hydroxide and calcium carbonate
- **C** dilute hydrochloric acid and magnesium
- **D** dilute hydrochloric acid and aqueous sodium hydroxide
- **20** Some general rules for the solubility of salts in water are listed.
 - Carbonates are insoluble (except ammonium carbonate, potassium carbonate and sodium carbonate).
 - Chlorides are soluble (except lead(II) chloride and silver chloride).
 - Nitrates are soluble.
 - Sulfates are soluble (except barium sulfate, calcium sulfate and lead(II) sulfate).

Which substances produce an insoluble salt when aqueous solutions of them are mixed?

- A barium chloride and magnesium nitrate
- B calcium chloride and ammonium nitrate
- C silver nitrate and zinc chloride
- **D** sodium carbonate and potassium sulfate

21 Elements in Group I of the Periodic Table react with water.

Which row describes the products made in the reaction and the trend in reactivity of the elements?

	products	trend in reactivity	
Α	metal hydroxide and hydrogen	less reactive down the group	
В	metal hydroxide and hydrogen more reactive down the		
С	metal oxide and hydrogen less reactive down		
D	metal oxide and hydrogen	more reactive down the group	

22 The equation shows the reaction between a halogen and aqueous bromide ions.

$$X_2$$
 + $2Br^- \rightarrow 2X^- + Br_2$ 1.....2......3......

Which words complete gaps 1, 2 and 3?

	1	2	3
Α	chlorine	brown	colourless
В	chlorine	colourless	brown
С	iodine	brown	colourless
D	iodine	colourless	brown

23 An inert gas R is used to fill weather balloons.

Which descriptions of R are correct?

	number of outer shell electrons in atoms of R	structure of gas R
Α	2	diatomic molecules
В	2	single atoms
С	8	diatomic molecules
D	8	single atoms

24 Heating copper(II) carbonate produces copper(II) oxide and carbon dioxide.

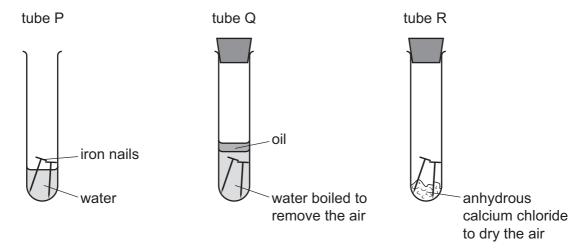
Heating the copper(Π) oxide formed with carbon produces copper.

Which processes are involved in this conversion of copper(II) carbonate to copper?

- A sublimation followed by oxidation
- **B** sublimation followed by reduction
- **C** thermal decomposition followed by oxidation
- **D** thermal decomposition followed by reduction
- **25** Four metals, W, X, Y and Z, are separately reacted with water and dilute hydrochloric acid.

The results are shown.

	metal							
	W	Z						
reaction with water	fizzes	no reaction	fizzes vigorously	no reaction				
reaction with dilute hydrochloric acid	fizzes	no reaction	fizzes violently	fizzes				


What is the order of reactivity of the four metals starting with the least reactive?

	least reacti	ve —	→ mo	ost reactive
Α	X	W	Z	Y
В	X	Z	W	Y
С	Y	W	Z	X
D	Y	Z	W	X

- 26 Which statement about the uses of metals is not correct?
 - A Aluminium is used in aircraft because of its strength and good electrical conductivity.
 - **B** Copper is used in electrical wiring because of its good electrical conductivity.
 - **C** Stainless steel resists corrosion and is used to make cutlery.
 - **D** Transition elements are often used as catalysts.

						12		
27	Baı	uxite con	tains alumir	nium oxide.				
	Alu	minium i	s extracted	from alumii	nium oxide	e by electroly	ysis.	
	Wh	y is cryo	lite added to	the electro	olytic cell	used to extra	act alum	inium?
	Α	Cryolite	prevents th	ne carbon a	nodes be	ing burned a	iway.	
	В	Cryolite	removes in	npurities fro	om the ba	uxite.		
	С	Cryolite	increases t	he rate at v	which alur	ninium ions	are disc	narged.
	D	Molten	cryolite diss	olves the a	luminium	oxide.		
28	Wh	ich state	ment about	the Haber	process is	s correct?		
	Α	The hyd	drogen used	l is obtaine	d from the	air.		
	В	The nitr	rogen used i	is obtained	from nitra	ites in the so	oil.	
	С	Nitroge	n reacts witl	n hydrogen	to make	ammonia.		
	D	The rea	action takes	place at ro	om tempe	rature and p	ressure	
29	Wh	ich state	ments abou	t sulfur dio	xide pollut	tion are corre	ect?	
		1	It increase	s the pH of	rivers.			
		2	It damage:	s limestone	buildings	i.		
		3		espiratory	•			
	٨				C	1 and 3	_	2 and 3
	Α	1 only	В	2 only	C	i and 3	D	2 and 3
30	Arg	jon is a n	oble gas us	ed to fill lig	ht bulbs.			
	Wh	at is the	approximate	e percentaç	ge of argo	n in air?		
	Α	1%	В	20%	С	79%	D	99%

31 The diagrams show experiments involving the rusting of iron.

A student predicted the following results.

- 1 In tube P, the iron nails rust.
- 2 In tube Q, the iron nails do not rust.
- 3 In tube R, the iron nails do not rust.

Which predictions are correct?

- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- 32 In the carbon cycle, which two processes add carbon dioxide to the atmosphere?
 - A combustion and carbonate formation
 - **B** combustion and photosynthesis
 - **C** combustion and respiration
 - **D** respiration and photosynthesis
- **33** Which statement about sulfur or one of its compounds is correct?
 - A Sulfur occurs naturally as the element sulfur.
 - **B** Sulfur dioxide is used to kill bacteria in drinking water.
 - C Sulfuric acid is a weak acid.
 - **D** Dilute sulfuric acid is a dehydrating agent.

- 34 What is not a use of lime?
 - **A** It is used as a bleach in the manufacture of wood pulp.
 - **B** It is used to desulfurise flue gases.
 - **C** It is used to neutralise acidic industrial waste.
 - **D** It is used to treat acidic soil.
- 35 Which equation representing a reaction of methane is correct?
 - A $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
 - **B** $CH_4 + Cl_2 \rightarrow CH_4Cl_2$
 - $C \quad CH_4 + Cl_2 \rightarrow CH_2Cl_2 + H_2$
 - **D** $2CH_4 + 2Cl_2 \rightarrow 2CH_3Cl + Cl_2 + H_2$
- 36 Which two compounds are molecules which both contain a double bond?
 - A ethane and ethanoic acid
 - **B** ethane and ethanol
 - C ethene and ethanoic acid
 - **D** ethene and ethanol
- 37 Ethanol can be formed by:
 - 1 fermentation
 - 2 reaction between steam and ethene.

Which of these processes use a catalyst?

	1	2
Α	✓	✓
В	✓	X
С	X	✓
D	X	X

38 Ethanol is manufactured from ethene.

What is an advantage of this process?

- A It is a continuous process.
- **B** It has high labour costs.
- **C** It needs high temperature and pressure.
- **D** It uses non-renewable materials.
- 39 Which reaction can be used to make ethanoic acid?
 - A oxidation of ethanol
 - B oxidation of ethene
 - C reduction of ethanol
 - **D** reduction of ethene
- **40** The structure of an addition polymer is shown.

Which monomer is used to make this polymer?

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	\equiv	2	He	nelium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	rypton 84	54	Xe	enon 131	98	Rn	radon –			
	₹				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromin 80	53	Н	iodine 127	85	Ą	astatin			
	5				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	mninolod -	116	_	livermorium -
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥				9	ပ	carbon 12	14	: <u>S</u>	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium
	=	_			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_l	thallium 204			
											30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	S	copernicium
											29	J.	copper 64	47	Ag	silver 108	62	Αu	gold 197	111	Rg	roentgenium
dn											28	ī	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Group											27	ဝိ	cobalt 59	45	格	rhodium 103	77	Ľ	iridium 192	109	¥	meitnerium -
		_	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
					J						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						loc	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	<u>n</u>	tantalum 181	105	Ср	dubnium
					10	ato	rela				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	₹	rutherfordium -
								,			21	လွ	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=	-			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ļ	francium -

rı Lu	lutetium 175	103	۲	lawrencium	I
70 Yb	ytterbium 173	102	%	nobelium	I
e9 Tm	thulium 169	101	Md	mendelevium	I
® 可	erbium 167	100	Fm	fermium	I
67 Ho	holmium 165	66	Es	einsteinium	I
66 Dy	dysprosium 163	86	Ç	califomium	I
65 Tb	terbium 159	97	ă	berkelium	I
64 Gd	gadolinium 157	96	Cm	curium	I
63 Eu	europium 152	92	Am	americium	I
Sm	samarium 150	94	Pu	plutonium	I
e1 Pm	promethium —	93	dΝ	neptunium	I
9 P	neodymium 144	92	\supset	uranium	238
₅₉	praseodymium 141	91	Ра	protactinium	231
Çe S	cerium 140	06	Т	thorium	232
57 La	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).