

Mark Scheme (Results)

October 2018

Pearson Edexcel International Advanced Level in Statistics S1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com /contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018
Publications Code WST01_01_1810_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- 4. All A marks are `correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

	www.dynamicpapers.com				
Question Number	Scheme	Marks			
1.(a)	$S_{tt} = 1828 - \frac{(136)^2}{12} = 286.6$ o.e. awrt <u>287</u>	M1A1			
(b)	$r = \frac{S_{ht}}{\sqrt{S_{tt}S_{hh}}} = \frac{-236}{\sqrt{"286.6" \times 297}} \text{ or } \frac{-236}{\sqrt{85140}}; = -0.8088 \text{ awrt } \underline{-0.809}$	(2) M1A1			
(c)	Temperature decreases as height increases.	B1ft (1)			
(d)	$b = \frac{S_{ht}}{S_{hh}} = \frac{-236}{297} (= -0.7946)$ $a = \overline{t} - b\overline{h} = 11.3 + 0.7946 \times 9.33 = 18.7497$	M1 M1			
(e)	$t = 18.7 - 0.795 \times 5 = 14.7$	A1 (3) M1 A1 (2)			
(f)	Unreliable as the data is from France not South Africa	B1 (1) Total 11			
	Notes				
(a)	Correct numerical answers in (a), (b), (d) or (e) score all the marks for that part. M1 Correct expression for S_{tt} A1 awrt 287 allow exact fractions e.g. $\frac{860}{3}$ or $286\frac{2}{3}$				
(b)	M1 for attempt at correct formula, values must be substituted. Allow $\frac{-236}{\sqrt{287 \times 297}}$ A1 awrt -0.809 (allow -0.808 from a correct expression with 287 used)				
(c) NB	B1ft for a comment in context. Must see "height" (or h) and "temperature" (or t) and "temperature				
(d)	M1 Correct expression for b . M1 Allow 11.3"their $b \times 9.33$ " [$a = \frac{16706}{891}$ scores M1 but A0] A1 $t = (18.75 \text{ or awrt } 18.7) - (\text{awrt } 0.795)h$ [No fractions and no x, y]				
(e)	M1 substitute $h = 5$ or 500 into their regression line A1 answer in range [14.7, 14.8] (condone coming from y , x equation)				
(f)	B1 unreliable with a reason. [Use of 500 in (e) <u>and</u> stating "out of range" is B0] Must mention France or (S) Africa and at least imply the other				

Question Number	ı i	
	Scheme	Marks
2.(a)	$Q_2 = 54$	B1
	$Q_1 = 45$	B1
	$Q_3 = 59$	B1 (2)
(b)	Upper limit = $59 + 1.5 \times 14 = 80$	(3) M1
	Lower limit = $45 - 1.5 \times 14 = 24$	A1
	Outlier 84	A1ft
		(3)
	Males	
		B1
		DI
		B1
(c)	Females	D1
		B1
	20 30 40 50 60 70 80 90	
	Weight (kg)	
(3)		(3)
(d)	Any two from:	D1
	The females are heavier than the males (on average). The males have lower median than females.	B1 B1
	The males have a smaller IQR than the females.	D1
	The females have a greater range than males.	
	The females have a greater range than males. [Comments just about skewness are B0]	(2)
	[Comments just about skewness are B0] Notes	(2) Total 11
(a)	[Comments just about skewness are B0] Notes 1 st B1 for $O_2 = 54$	`
(a)	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$	` ` `
(a)	[Comments just about skewness are B0] Notes 1 st B1 for $O_2 = 54$	` '
, ,	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$	` ` `
(a) (b)	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a)	`
• •	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1st A1 80 and 24	`
• •	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a)	`
• •	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1st A1 80 and 24 2nd A1ft all outliers identified using their limits (must be stated in (b)) 1st B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk	Total 11
(b)	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1st A1 80 and 24 2nd A1ft all outliers identified using their limits (must be stated in (b))	Total 11
(b)	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1st A1 80 and 24 2nd A1ft all outliers identified using their limits (must be stated in (b)) 1st B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk 2nd B1 For only one lower whisker to 32 and no outliers 3rd B1 For upper whisker to 80 or 77 and an outlier at 84	Total 11
(b)	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1st A1 80 and 24 2nd A1ft all outliers identified using their limits (must be stated in (b)) 1st B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk Q_1 and B1 For only one lower whisker to 32 and no outliers	Total 11
(b) (c)	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1st A1 80 and 24 2nd A1ft all outliers identified using their limits (must be stated in (b)) 1st B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk 2nd B1 For only one lower whisker to 32 and no outliers 3rd B1 For upper whisker to 80 or 77 and an outlier at 84 NB If there are whiskers at both 77 and 80 it is 3^{rd} B0	Total 11 ers on RHS
(b)	[Comments just about skewness are B0] Notes 1st B1 for $Q_2 = 54$ 2nd B1 for $Q_1 = 45$ 3rd B1 for $Q_3 = 59$ M1 correct expression for either limit ft their values in (a) 1st A1 80 and 24 2nd A1ft all outliers identified using their limits (must be stated in (b)) 1st B1 Box with whiskers drawn and Q_2 and quartiles ft from(a), condone 2 whisk 2nd B1 For only one lower whisker to 32 and no outliers 3rd B1 For upper whisker to 80 or 77 and an outlier at 84	Total 11 ers on RHS erage"

Question	Scheme	Marks
Number	Width = 3 cm	B1
3(a)	1cm^2 represents 2 cars or 0.5cm^2 represents 1 car or their $h \times w = 6$ or area = 6	M1
	$Height = \frac{6}{3} = 2 \text{ cm}$	A1
	3	(3)
(b)	Median = $(2) + \frac{30 - 28}{15} \times 2$ or $(2) + \frac{30.5 - 28}{15} \times 2$ (o.e.)	M1
	= 2.266 (or 2.33)	A1 (2)
(c)	$\begin{bmatrix} \overline{t} = \end{bmatrix} \frac{182}{60} = 3.03$	B1
	$\left[\sigma_{t}=\right]\sqrt{\frac{883}{60}-\bar{t}^{2}}=\sqrt{5.5155}$	M1
	= 2.3485 (s = 2.3683)	A1
(d)	Mean > median	(3) B1ft
()	Positive skew	dB1
(e)	[75 mins = 1.25 hours]	(2)
	(> 75 mins) = $5 + 12 + 15 + \frac{3}{4} \times 18 = 45.5$ or (< 75) = $10 + \frac{1}{4} \times 18$ or $28 - \frac{3}{4} \times 18$	M1
	T T T	M1
	$P(T > 1.25) = \frac{45.5}{60} \text{ or e.g. } 1 - \frac{14.5}{60}$	M1
	60 60 0.7583 awrt 0.758	A1
		(3)
	Notes	Total 13
(a)	B1 3 only M1 may be implied by correct height A1 correct height of 2(cm) and correct width of 3 (cm)	
(b)	M1 for any correct equation leading to correct fraction as part of $m =$ or $(m - [$ Ignore incorrect end point and watch out for "working down"	2]) =
	A1 awrt 2.27 allow exact fraction e.g. $\frac{34}{15}$ (allow awrt 2.33 [or $\frac{7}{3}$] if $n+1$ used)	
(c)	B1 awrt 3.03 (allow exact fraction e.g. $\frac{91}{30}$)	
	M1 A correct expression A1 awrt 2.35 or 2.37	
(d)	1 st B1 ft their mean and median (Allow "larger frequencies at the start of table"	")
	Do not allow comparison of quartiles unless correct values are seen (2sf cor	mparisons)
	$Q_1 = 1.28$ or $\frac{23}{18} [(n+1) = 1.29]$ $Q_3 = 4.33$ or $\frac{13}{3} [(n+1) = 4.42]$ e.g. $2.1 > 0.99$ of 2^{nd} dB1 dependent on previous B1 being awarded.	r 2.1 > 1.0
(e)	1 st M1 for a correct expression for no. of cars longer than 75 mins or shorter than	75 mins
	$2^{\text{nd}} \text{ M1 } \frac{k}{60} \text{ where } 44 \leqslant k < 46$	
	A1 awrt 0.758 allow $\frac{91}{120}$ (o.e.)	
NB	Any use of the normal distribution is M0M0A0	

	www.dynamicpapers.com		
Question Number	Scheme	Marks	
4.(a)	0.13	B1	
(b)	$P(A) \times P(C) = P(A \cap C)$	(1)	
, ,	$0.2 \times (0.08 + p) = 0.05 \underline{\mathbf{or}} P(C) = \frac{0.05}{0.10 + 0.05 + 0.01 + 0.04} \underline{\mathbf{or}} \frac{0.05}{0.2} \underline{\mathbf{or}} 0.25$	M1	
	p = 0.17	A1	
	P(no faults) = $1 - (0.1 + 0.05 + 0.01 + 0.04 + 0.08 + 0.03 + "0.17")$	M1	
	$\underline{\text{or}} 1 - [\text{"P(C)"} + 0.10 + 0.05 + 0.08] \\ q = \underline{\textbf{0.52}}$	A1	
Ans only	They can get q without finding p so a correct answer to q scores $4/4$		
		(4)	
(c)	P(Fault B but not fault C Has fault A) = $\frac{0.05}{0.2}$	M1	
(6)			
	= 0.25	A1	
(E)	$P(\text{avestly 2 defeats}) = 0.12$ or $\frac{3}{2}$	(2)	
(d)	P(exactly 2 defects) = 0.12 or $\frac{3}{25}$	B1	
	P(both have 2 defects) = 0.12^2	M1 A1	
	$= \underline{0.0144} \qquad \underline{\text{or}} \frac{9}{625}$		
		(3) Total 10	
	Notes	1044110	
(a)			
(b)	1 st M1 using $P(A) \times P(C) = P(A \cap C)$ allow one addition error in $P(A)$ e.g. $P(A) = P(A)$	0.11	
()	1 st A1 0.17 only		
	$2^{\text{nd}} \text{ M1} 1 - (0.10 + 0.05 + 0.01 + 0.04 + 0.08 + 0.03 + \text{"their } 0.17\text{"}) \text{ allow letter } p \text{ for } p \text$	or 0.17	
	or $1 - ["P(C)" + 0.10 + 0.05 + 0.08]$ but need a value for $P(C)$ [M0A0M1A0]	possible]	
	$2^{\text{nd}} \overline{\text{A1}}$ 0.52 only (correct answer of 0.52 with no incorrect working is 4/4)		
(c)	M1 for attempt at $P(B \cap C' A)$ allow for $\frac{0.06}{0.2}$ or $\frac{0.05}{0.2}$ allow ft of their $P(A)$ us	ed in part(b)	
	A1 0.25		
(d)	B1 sight of 0.12 or $(0.05 + 0.03 + 0.04)$ only NB e.g. 0.12×2 is B1M0A0 M1 $("0.12")^2$ where $0.1 < "0.12" < 0.2$ May see attempt at $(0.05 + 0.03 + 0.04)^2$ multiplied out but must have ≥ 4 corresponds to the sign of the sig		
	A1 0.0144 (o.e.) (correct answer only scores 3/3)	P Gareto	
	(collect answer only scores 3/3)		

			www.dynamicpa	pers.com
Question Number	Scheme			
5. (a)	$k = \frac{2}{35}$			B1
(b)	$ \begin{array}{c ccccc} x & 1 & \\ P(X=x) & \frac{3}{35} & \frac{5}{35} \\ \hline P(X=x) & 0.08571 & 0.1 \\ \hline 5 & 7 & 12 & \\ \end{array} $	$ \begin{array}{c cccc} 2 & 3 \\ \hline & or \frac{1}{7} & \frac{7}{35} \text{ or } \frac{1}{5} \\ \hline & 4285 & 0.2 \end{array} $	$\begin{array}{c cccc} & 4 & 5 \\ \hline & 9 & 11 \\ \hline & 35 & 35 \\ \hline & 0.25714 & 0.31428. \end{array}$	M1 A1 (3) M1 A1ft
(c)	$E(X) = 1 \times \frac{3}{35} + 2 \times \frac{5}{35} + 3 \times \frac{7}{35} + 4 \times \frac{9}{35} + 5 \times \frac{11}{35} = \left[\frac{25}{7}\right]$ $E(X^2) = 1 \times \frac{3}{35} + 4 \times \frac{5}{35} + 9 \times \frac{7}{35} + 16 \times \frac{9}{35} + 25 \times \frac{11}{35} = \left[\frac{101}{7}\right]$			
	$E(X^{2}) = 1 \times \frac{1}{35} + 4 \times \frac{1}{35} + 9 \times \frac{1}{35} + 16 \times \frac{1}{35} + 25 \times \frac{1}{35} = \frac{1}{7}$ $Var(X) = \frac{101}{7} - \left(\frac{25}{7}\right)^{2} ; = \frac{82}{49} \text{(allow } 1.67 \sim 1.674\text{)}$ $Var(12 - 7X) = 7^{2} \times \frac{82}{49} ; = 82$			
(d)	$4X \le Y \text{ when } X = 1, 4 \text{ or } 5, \qquad \text{so probability} = "\frac{3}{35}" + "\frac{9}{35}" + "\frac{11}{35}"$ $= \frac{23}{35}$			
		Notes		Total 14
(a)	B1 may be implied by a cor M1 need x values each with A1 all values correct – accep	a prob and at least one		obs in terms of k)
` ,	M1 "their $P(X=2)$ " + "their PA1ft ft providing <1 Allow		0.343] <u>or</u> 6 <i>k</i>	
(c)	1 st M1 using $\sum xP(X = x)$ or $\sum x^2P(X = x)$ or $\sum x^2P(X = x)$ or $\sum x^2P(X = x)$	$\frac{r}{7} \frac{25}{7} \frac{\text{or}}{0} \frac{125}{2}k \qquad \frac{\text{or}}{2} \sum y^{1}$ $\frac{r}{7} \frac{101}{7} \frac{\text{or}}{0} \frac{505}{2}k \qquad \text{or} \sum y^{2}$	$P(Y = y) \underline{\text{or}} - 13 \ (\geqslant 4 \text{ c})$ $P(Y = y) \underline{\text{or}} - 13 \ (\geqslant 4 \text{ c})$ $P(Y = y) \qquad (\geqslant 4 \text{ c})$	correct terms or ft) orrect terms or ft)

2nd M1 using $\sum x^2 P(X = x)$ or $\frac{101}{7}$ or $\frac{505}{2}k$ 3rd M1 using $Var(X) = E(X^2) - [E(X)]^2$ 1st A1 for a correct answer (allow 3sf)

or $Var(Y) = E(Y^2) - [E(Y)]^2$

<u>or</u> for $E(Y^2) = 251$

 4^{th} M1 $49 \times Var(X)$

<u>or</u> correct distribution for *Y* (ft probs from *X*)

2nd A1 for 82 only

for X = 1, 4 or 5 [or Y = 5, -16, -23] and at least one correct ft probability. **(d)** M1

their " $\frac{3}{35}$ "; + their " $\frac{9}{35}$ " + their " $\frac{11}{35}$ " providing sum is <1 (allow in terms of k) A1ft

cao (allow $\frac{23}{2}k$) A1

Dist of Y

y^2	25	4	81	256	529
y	5	-2	-9	- 16	-23
P(X=x)	$\frac{3}{35}$	$\frac{5}{35}$ or $\frac{1}{7}$	$\frac{7}{35}$ or $\frac{1}{5}$	9 35	$\frac{11}{35}$

 $\mathbf{F}(x) = \mathbf{f}(x)$ Get $k = \frac{2}{85}$ Can award: (a) 0/3 (b) M1A1ft (c) M4A0 (d) M1A1ftA0

All in k | Can award: (a) B0M1A0 (b) 2/2 in (c) M4A0 (d) M1A1ftA1

Reverse Y May see Y = 12 - 7(6 - X) used: in (c) can score M3 A0 probably zero in (d)

Question	Scheme	Marks
Number 6. (a)	$P(L > 4.3) = P\left(Z > \frac{4.3 - 4.1}{0.125}\right)$	M1
(b)	$= P(Z > 1.6) \underline{\text{or}} 1 - P(Z < 1.6) \underline{\text{or}} 1 - 0.9452$ $= 0.0548$ $P(3.9 < L < 4.3) = P(Z < 1.6) - P(Z < -1.6) \text{or} 2(P(Z < 1.6) - 0.5)$ $= 0.9452 - 0.0548 \qquad = 2(0.9452 - 0.5)$	M1 A1 (3)
	= 0.8904 = 0.8904	B1cso (1)
(c)	Number of unusable bolts $= (1-0.89) \times 500 \text{ [= 55]}$ $\text{Value of bolts} = "445" \times 9 + "55" \times 1$ $E(\text{profit per bolt}) = 0.89 \times 9 + 0.11 \times 1 - 5$	M1oe 5 M1oe
	profit = "445"×9+"55"×1-500×5 Profit from bolts = 1560 pence E(profit per bolt)=0.89×9+0.11×1=5 Profit = "3.12"×500 Profit from bolts = 1560 pence	M10e M1 oe A1 (4)
(d)	$\frac{4.198 - \mu}{\sigma} = 1.96$ or $4.198 - \mu = 1.96\sigma$ oe	M1A1
	$\begin{vmatrix} \frac{4.065 - \mu}{\sigma} = -0.7 & \text{or} & 4.065 - \mu = -0.7\sigma & \text{oe} \\ 0.133 = 2.66\sigma & \end{vmatrix}$	A1 M1
(e)	$\sigma = 0.05$ (or awrt 0.0500) $\mu = 4.1$ (or awrt 4.10) The mean the same but the st. dev. decreased or P(3.9 < L < 4.3) increased.	A1 A1 (6) B1ft
	So the profit will increase NB Use of + 0.7 in (c) $\rightarrow \mu = 3.99, \sigma = 0.106$, prob $\approx 0.80 \rightarrow$ profit down	dB1ft (2) Total 16
	Notes	
	1^{st} M1 standardising. Allow use of 0.125^2 2^{nd} M1 $1-p$ $p > 0.8$	
(b)	A1 awrt 0.0548 B1cso sight of 0.8904 or better (calc: 0.8904014212) or a correct subtraction	on
(c)	$1^{\text{st}} \text{M1} (1 - \text{"0.89"}) \times 500 \text{or} 0.89 \times 9 + 0.11 \times 1$ $2^{\text{nd}} \text{M1} \text{"445"} \times 9 + \text{"55"} \text{or} 0.89 \times 9 + 0.11 \times 1 - 5$ $3^{\text{rd}} \text{M1} \text{method for the profit} \text{or} \text{their} \text{"3.12"} \times 500$ $A1 \text{for awrt £15.60 or 1560 pence(p) [need units]}$ SC think 55 scraption is the profit of the	-
(d)	$1^{\rm st}$ M1 Forming either equation – must have z value but allow $\pm z$ where $ z > 0.1^{\rm st}$ A1 correct equation $4.198 - \mu = 1.96\sigma$ - any form (or allow $z = {\rm awrt} \ 1.90$) and A1 correct equation $4.065 - \mu = -0.7\sigma$ - any form (or allow $z = {\rm awrt} \ -2^{\rm nd}$ M1 eliminating μ or σ (method seen leading to equation in 1 variable) $3^{\rm rd}$ A1 0.05 (or awrt 0.0500) $3^{\rm rd}$ A1 4.1 (or awrt 4.10 dep of	960) 0.700)
	NB Candidate who assumes $\mu = 4.1$ can get M1 A0 A0M1A0A1 1 st B1ft if $\mu = 4.1$ then ft σ ; if $\mu < 3.9$ (allow any σ) otherwise need to see P(1) If they have $\mu = 4.1$ in part (d) then don't need to state "mean the same" in	*
		0 is B0B0]

Pearson Education Limited. Registered company number with its registered office at 80 Strand, London, WC2R 0F	r 872828 RL, United Kingdom	