Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Chemistry (4CH0) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2018
Publications Code 4CH0_2C_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	M1 carbon M2 hydrogen	ACCEPT C ACCEPT H / H2 For M1 and M2, if name and symbol/formula given both must be correct	2
(b)	oxygen	ACCEPT O2 IGNORE O	M2 water (vapour)
(c) (i)	M1 carbon dioxide ACCEPT H2O ALLOW steam (ii)	for M1 and M2, if name and formula given both must be correct	ACCEPT CO

Total for Question $1=\mathbf{6}$

Question number	Answer		Notes	Marks
$2 \text { (a) }$	Fuel Change in temperature ${ }^{2} W$		All three must be correct IGNORE trailing zeroes	1
	W			
	X	(+) 10.3		
	Y	(+) 15.9		
	Z	(+) 11.1		
(b)	M1 fuel Y		ECF on temperature changes recorded in table	2
	M2 (because it produces the) largest temperature rise/increase		ACCEPT (because it produces the) largest temperature change	
			IGNORE reaches the highest final temperature	
(c)	C (exothermic)			1
	A is incorrect as decomposition is not the name given to reactions that release heat energy			
	B is incorrect as endothermic reactions take in heat energy			
	D is incorrect as reduction is not the name given to reactions that release heat energy			

Total for Question 2 =

Question number	Answer						Notes	Mark
3 (a) (i)	Burette after Burette before Volume added M1 3.1 M2 17.65	readi readi of aci		$\begin{array}{r} \hline 20 . \\ \hline 3 . \\ \hline 17 . \end{array}$.80$)$		Mark M2 CQ on M1 If the answers are in the wrong order allow 1 mark	2
(b) (i)	Volum e of acid added Conco rdant result s	$\begin{aligned} & 26.2 \\ & 5 \end{aligned}$	$\begin{aligned} & 25.1 \\ & 0 \\ & \hline \quad \checkmark \end{aligned}$	$\begin{aligned} & 25.7 \\ & 5 \end{aligned}$	$\begin{array}{\|l} 25.3 \\ 0 \end{array}$	$\begin{array}{\|c} 25.2 \\ 0 \\ \hline \checkmark \end{array}$	All three columns must contain ticks	1

Question number	Answer	Notes	Mark
3 (b) (ii)	$25.2(0)$	CQ on any combination of ticked results rounded correctly If no results are ticked then the mark can only be awarded for 25.2(0) If only one column ticked then no mark can be awarded in (b)(ii)	1
ALLow any number of figures after the decimal point, but answer must be given to at least one decimal place			

Question number	Answer	Notes	Marks
4 (a)	C (fluorine) A is incorrect as bromine is not the most reactive element. It is not as reactive as fluorine B is incorrect as chlorine is not the most reactive element. It is not as reactive as fluorine D is incorrect as iodine is the least reactive element of the four		1
(b)	D (iodine) A is incorrect as bromine is a liquid at room temperature B is incorrect as chlorine is a gas at room temperature C is incorrect as fluorine is a gas at room temperature		1
(c)	D (iodine) A is incorrect as bromine is brown and not as dark as iodine, which is dark grey B is incorrect as chlorine is pale green C is incorrect as fluorine is pale yellow		1
(d)	M1 Σ (bonds broken) $=436+$ 193 OR 629 ($\mathrm{kJ} / \mathrm{mol}$) M2 Σ (bonds made) $=2 \times 366$ OR $732(\mathrm{~kJ} / \mathrm{mol})$ M3 $\Delta H=-103(\mathrm{~kJ} / \mathrm{mol})$ OR M1 - M2 evaluated correctly with the correct sign	IGNORE any signs in M1 and M2 negative sign required -103 with or without working scores 3 (+)103 with or without working scores 2	3

Total for Question 4 = 6

Question number	Answer	Notes	Marks
5 (a) (i)	Yeast	ALLOW zymase IGNORE enzyme(s)	1
	$\begin{aligned} & \left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \rightarrow\right)^{2} \\ & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \end{aligned}$	ACCEPT multiples and fractions	1
		IGNORE state symbols even if incorrect	
	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+ \\ & 2 \mathrm{CO}_{2} \end{aligned}$	ACCEPT multiples and fractions	1
		IGNORE state symbols even if incorrect ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for ethanol	
	C (fractional distillation)		1
	A is incorrect as you could not obtain ethanol by crystallisation		
	B is incorrect as you could not obtain ethanol by filtration		
	D is incorrect as simple distillation is not the most effective way to obtain ethanol		

Question number	Answer	Notes	Marks
5 (b) (i)	phosphoric acid	ACCEPT $\mathrm{H}_{3} \mathrm{PO}_{4}$ If both name and formula given, mark name only REJECT phosphorus acid IGNORE reference to concentration	1
(ii)	$\text { M1 } 300\left({ }^{\circ} \mathrm{C}\right)$	ACCEPT any temperature, or range of temperatures, between 250 and 350 inclusive ACCEPT temperatures in other units provided unit is given	2
	M2 60-70 (atm)	ACCEPT any pressure or range of pressures between 60 and 70 inclusive ACCEPT pressures in other units provided unit is given e.g. $6 \times 10^{6} \mathrm{~Pa}$ to $7 \times 10^{6} \mathrm{~Pa}$	

Question number	Answer	Notes	Marks
(c) (i) (ii)	dehydration (to act as a) catalyst	ACCEPT (thermal) decomposition/elimination ACCEPT to increase the rate of reaction IGNORE to lower the activation energy IGNORE references to increased surface area	1 1
(d) (i) (ii)	(contains a carbon to carbon) double bond / $\mathrm{C}=\mathrm{C}$ M1 (from) orange M2 (to) colourless	ALLOW multiple bond ACCEPT brown/yellow or any combination of orange/brown/yellow e.g. orange-brown REJECT red IGNORE clear ALLOW decolourised REJECT discoloured Award 1 mark for two correct answers in wrong order	1 2

Question number	Answer	Notes	Marks
6 (a) (i)	M1 the equilibrium shifts to the left (as temperature increases) M2 (because the forward) reaction is exothermic/ releases heat (energy)/ releases thermal energy	ALLOW the reaction moves in the backwards direction OWTTE IGNORE changes in amounts of reactants and products e.g. less phosgene/more CO and Cl_{2} produced ACCEPT (because the) backward reaction is endothermic/ takes in heat (energy)/takes in thermal energy IGNORE references to Le Chatelier's principle, eg favours the reaction that tries to reduce the temperature/ favours the backward reaction M2 dep on M1 correct or missing	2
(ii)	M1 (yield) increases / the amount of phosgene increases M2 as there are fewer moles/molecules (of gas) on the right	ACCEPT there are fewer moles/molecules of product ACCEPT reverse argument ALLOW particles REJECT atoms IGNORE references to Le Chatelier's principle, eg favours the reaction with more moles (of gas) M2 dep on M1	2
(b)	$\begin{aligned} & \underset{\mathrm{COCl}_{2}}{\mathrm{CO}_{2}}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl} \\ & +\mathrm{CO}^{2} \end{aligned}$	ACCEPT multiples and fractions IGNORE state symbols even if incorrect	1

Question number	Answer	Notes	Marks
6 (c)			3
	M1 both bond pairs for C-Cl correct	ACCEPT any combination of dots and crosses	
	M2 bond pairs for $\mathrm{C}=\mathrm{O}$ correct	IGNORE inner shells even if incorrect	
	M3 all non-bonded electrons correct	M3 dep on M1 and M2 correct	

Total for Question $6=8$

Question number	Answer	Notes	Marks
7 (a)	carbon dioxide/gas escapes (from the crucible)/is given off/is lost/is released	REJECT incorrectly named gas IGNORE carbon dioxide is formed REJECT references to evaporation	1
(b) (i)	to check that the magnesium carbonate has fully decomposed	ALLOW to make sure all (the magnesium carbonate) has reacted/the reaction is complete OWTTE ALLOW to make sure all the gas/carbon dioxide has been given off IGNORE the reaction has stopped	1
(ii)	M1 (expt) 1 M2 (because the) mass is not constant (after heating for 15 minutes)/mass at 15 minutes is different from the mass at 10 minutes OR the mass is still changing (after heating for 15 minutes)	ALLOW weight for mass M2 dep on M1	2

Question number	Answer	Notes	Marks
8 (a)	$\begin{array}{ll} \hline \text { M1 } & 0.0968 \times 0.1(00) \\ \text { OR } & \frac{0.0968 \times 100}{1000} \\ \text { M2 } & 0.00968(\mathrm{~mol}) \end{array}$	ACCEPT 0.0097 REJECT 0.01 ALLOW 9.68/9.7 for 1 mark Correct final answer without working scores both marks	2
(b)	$\begin{aligned} & \text { M1 } 0.29 \div 58 \\ & \text { M2 } 0.005(0)(\mathrm{mol}) \end{aligned}$	Correct final answer without working scores both marks	2
(c)	M1 Yes (he used the right amount of magnesium hydroxide) / no he used too much (magnesium hydroxide) M2 $1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$ reacts with/neutralises 2 mol HCl OR $0.005 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$ reacts with/neutralises 0.01 mol HCl OR 0.00968 mol HCl reacts with/is neutralised by $0.00484 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$	ACCEPT He needs 0.00484 $\mathrm{mol}\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)$	2

Question number	Answer	Notes	Marks
9 (a) (i)	M1 $(\rightleftharpoons$) (the reaction is) reversible M2 (ΔH) (molar) enthalpy change (of reaction)	ACCEPT reaction goes both ways/both forward and backward reactions can occur IGNORE equilibrium ACCEPT heat (energy) change/thermal energy change IGNORE enthalpy alone REJECT temperature change	2
(ii)	vanadium(V) oxide / vanadium pentoxide	ACCEPT vanadium oxide ACCEPT $\mathrm{V}_{2} \mathrm{O}_{5}$ REJECT vanadium in any other oxidation state IGNORE incorrect formula	1
(iii)	M1 (temperature) $450\left({ }^{\circ} \mathrm{C}\right)$ M2 (pressure) 2 (atm)	ACCEPT any temperature, or range of temperatures, between 400 to 500 inclusive ACCEPT temperature in other units provided unit is given ACCEPT any pressure, or range of pressures, between 1 and 5 (atm) inclusive ACCEPT pressure in other units provided unit is given e.g. $1 x$ 10^{5} to $5 \times 10^{5} \mathrm{~Pa}$	2

Question number	Answer	Notes	Marks
9 (b) (i)	a (corrosive) mist/cloud/fog/ spray/ fumes (of sulfuric acid) would be formed (above the mixture)	ACCEPT the reaction generates a lot of/too much heat/is too exothermic ACCEPT the mixture gets very/too hot/forms steam	1
(ii)	M1 (step 3) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{H}_{7} \mathrm{SO}_{4}$	IGNORE very exothermic IGNORE too dangerous/ explosive	
$\mathbf{M 2}$ (step 4) $2 \mathrm{SO}_{3} \mathrm{H}_{2} \mathrm{SO}_{7}$	ACCEPT multiples	2	
$\mathrm{H}_{2} \mathrm{O} \rightarrow$	ACCEPT multiples and fractions		

Question number	Answer	Notes	Marks
(c)	Any two from: M1 manufacture of/making detergents/ soaps	If they have not mentioned manufacture or making give MAX 1 for two correct uses. M2 manufacture of/making fertilisers	IGNORE used to manufacture sulphuric acid in the Contact Process
M3 manufacture of/making paints/ pigments/dyes M4 manufacture of/making polymers/ plastics/ fibres M5 pickling of steel / cleaning metals M6 manufacture of/making explosives M7 manufacture of/making paper M8 in car batteries/battery acid			

Total for Question 9 = 10

