

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 1CR

Pearson Edexcel International in Science Double Award (4SC0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com (and the using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4CH0_1CR_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer			Marks
1				6
	Information	Substance		
	a good conductor of electricity	copper		
	a noble gas	helium		
	a mixture	air		
	a liquid at room temperature	bromine		
	used in fire extinguishers	carbon dioxide/helium/nitrogen		
	used as a fuel	methane		

Total for Question 1 = 6

Question number	Answer	Notes	Marks
2 (a)	Any 3 from		3
	M1 (moving) water particles/molecules bombard/collide with the sugar cube		
	M2 sugar particles/molecules go into solution/dissolve		
	M3 sugar particles/molecules spread out/diffuse/move randomly	ALLOW sugar particles move from area of high concentration to area of low concentration	
	M4 (until) sugar particles/molecules are distributed evenly in the water	Max 2 if no reference to sugar particles/ molecules	
(b) (i)	B distillation		1
	A is incorrect as the diagram does not show the approximation C is incorrect as the diagram does not show the approximation D is incorrect as the diagram does not show the approximation.	paratus used for filtration	
(ii)	P tripod		4
	Q gauze	ACCEPT wire gauze	
	R condenser	ALLOW condensing tube	
	S conical flask	Do not allow just flask	

Total for Question 2 = 8

	Question number	Answer	Notes	Marks
3	(a)	pencil/it won't dissolve (in water/solvent)	ACCEPT ink/pen would/might dissolve (in water/solvent)	1
			ALLOW pencil won't separate (in the water)	
			ALLOW ink would mix with the food colourings/water	
			ALLOW ink would smudge/run/separate (in the water)/interfere with the results	
	(b) (i)	D contains only one colouring		1
		 A is incorrect as drink A contains three co B is incorrect as drink B contains two colo C is incorrect as drink C contains three co 	urings	
	(ii)	M1 C		2
		M2 spot moved the furthest/greatest distance	ACCEPT has a spot nearest to water/solvent front ALLOW blob/dot/mark/point/colour/dye for spot M2 dep on M1 correct or missing	

Question number	Answer	Notes	Marks
(iii)	M1 A and C		2
	M2 have spot at same level/travelled same distance	ALLOW spots align/have same R _f values ALLOW blob/dot/mark/point/colour /dye for spot M2 dep on M1	

Total for Question 3 = 6

Question number	Answer	Notes	Marks
4 (a)	proton 1 +1		3
	neutron 1 0	ALLOW zero / neutral / no charge / none	
	electron 1/1836 -1	ALLOW 1/1800 to 1/2000 ALLOW 0.0005 to 0.00056 ALLOW negligible	
	All 6 correct 3 marks	REJECT 0 / almost 0	
	4 or 5 correct 2 marks 2 or 3 correct 1 mark	Columns reversed MAX 1	
(b) (i)	Т	ALLOW Mg / magnesium	1
(ii)	Т	ALLOW Mg / magnesium	1
(iii)	Q	ALLOW O ²⁻ / oxide ion	1
(iv)	S	ALLOW F / fluorine	1
(c)	D the same number of protons		1
	A is incorrect as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have the same of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a difference of the correct as isotopes do not have a differenc	erent number of electrons	

Total for Question 4 = 8

Question number	Answer	Notes	Marks
5 (a) (i)	A atomic number		1
	B is incorrect as the elements in the Per increasing mass number	riodic Table are not arranged in order of	
	C is incorrect as the elements in the Periodic increasing neutron number	odic Table are not arranged in order of	
	D is incorrect as the elements in the Perincreasing relative atomic mass	iodic Table are not arranged in order of	
(ii)	Phosphorus/P		1
(iii)	Any two from:		2
	M1 carbon	ALLOWC/N/F	
	M2 nitrogen	ALLOW N ₂ /F ₂	
	M3 fluorine	ALLOW boron/B	
		ALLOW 1 mark for names/formulae of two correct acidic oxides	

Question number	Answer	Notes	Marks
•		ACCEPT makes lakes acidic / lowers pH of lakes IGNORE pollution plants/trees/vegetation/crops/named example dies/stunted growth/harmed/damaged/poisoned IGNORE deforestation/ leaching minerals fish/aquatic animals/pond life/marine life/named example dies/stunted growth /harmed /damaged /poisoned	Marks 2
		IGNORE references to just animals limestone/marble reacts/corrodes/is eaten away NOT just buildings IGNORE rusts or physical process such as erosion / weathering/ wearing away / dissolving ACCEPT destroys for adverse effect in all of above IGNORE respiratory problems IGNORE harmful/dangerous	

_	uesti umb		Answer	Notes	Marks
5	(b)	(i)	magnesium + sulfur → magnesium sulfide	ACCEPT sulphur ACCEPT magnesium sulphide	1
				REJECT magnesium sulf ite / magnesium sulf ate	
		(ii)	M1 (each) magnesium/Mg (atom) loses two electrons /Mg (electronic configuration) changes from 2.8.2 to 2.8 M2 (each) sulfur/S (atom) gains two electrons /S (electronic configuration) changes from 2.8.6 to 2.8.8	Mg transfers two electrons to S scores M1 and M2 ALLOW 1 mark for Mg loses electron(s) and S gains electron(s) No M1 or M2 if mention of electron sharing or covalent bonding	3
			M3 Mg ²⁺ and S ²⁻	ALLOW Mg (ion) has a charge of 2+/+2 and S (ion) has a charge of 2-/-2 Two correct ionic half equations scores all 3 marks Diagrams showing electron transfer and charges on the ions scores all 3 marks	

Question number	Answer	Notes	Marks
5 (b) (iii)		Correct answer with no working or alternative correct working scores 3 marks	3
	M1 $n(Mg) = 0.30/24 = 0.0125$	BUT if atomic numbers used in M1 and M2 only M3 can be scored (for	
	M2 $M_r (MgS) = 56$	an answer of 0.7g)	
	M3 mass MgS = $0.0125 \times 56 = 0.7(0)g$		
	OR		
	M1 Mr (MgS) = 56	ALLOW ECF if M1 and/or M2 incorrect	
	M2 (so) 24 (g Mg) gives 56 (g MgS)		
	M3 (so) 0.30 (g Mg) gives 56/24 x 0.3 = 0.7(0) g	ALLOW ECF for M2 and M3 if M1 incorrect	

Total for Question 5 = 13

Question number	Answer	Notes	Marks
6 (a)	$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$	ALLOW multiples	2
	M1 all correct formulae	IGNORE state symbols even if incorrect	
	M2 correct balancing	lincorrect	
	M2 DEP on M1		
(b) (i)	M1 carbon dioxide/gas would escape through thistle funnel	ACCEPT end of thistle funnel should go into the acid ALLOW should be a tap on thistle funnel	2
	M2 should collect by downward delivery /gas jar wrong way up OWTTE	ACCEPT carbon dioxide/gas more dense than air so would not go into gas jar OWTTE	
		IGNORE should collect gas over water / in a gas syringe	
(ii)	M1 calcium sulfate insoluble	ALLOW calcium sulfate only slightly soluble / is a precipitate	2
	M2 (calcium sulfate) forms coating on marble chips (and stops acid reacting with marble chips) OWTTE	ALLOW solid calcium sulfate produced	

Question number	Answer	Notes	Marks
(c)	C weakly acidic		1
	A is incorrect because a solution with pH 6	is not weakly alkaline	
	B is incorrect because a solution with pH 6 is not strongly alkaline		
	C is incorrect because a solution with pH 6 is not strongly acidic		

Question number	Answer	Notes	Marks
6 (d) (i)	M1 (electrostatic) attraction between bonding/shared pair(s) of electrons	ALLOW electrostatic forces for attraction	2
	M2 and nuclei (of both atoms) OR	Do not award M2 if reference to only one nucleus	
	M1 bonding/shared pair(s) of electrons		
	M2 attracted to nuclei (of both atoms)	Do not award M2 if reference to only one nucleus	
		If the implication is that the shared pair of electrons is between molecules or ions rather than atoms scores 0 out of 2	
(ii)	M1 weak forces/attraction(s) between molecules / weak intermolecular forces M2 (so) little (thermal/heat) energy required to overcome the forces /attraction(s) (between molecules) /separate the molecules	ALLOW weak bonds between molecules / intermolecular bonds ALLOW little energy needed to break the bonds if it is clear that they are referring to intermolecular forces IGNORE less energy required Any reference to weak covalent bonds / weak bonds between atoms or breaking of covalent bonds /breaking of bonds between atoms scores 0 out of 2	2

	estion mber	Answer	Notes	Marks
6 (d) (iii)	M1 two pairs electrons between carbon atom and both oxygen atoms	ALLOW any combination of dots and crosses	2
		M2 rest of molecule fully correctM2 DEP on M1	Ö Č Č	

Total for Question 6 = 13

Question number	Answer	Notes	Marks
7 (a)	haematite		1
(b)	nitrogen	ACCEPT N ₂ REJECT other gases	1
(c)	M1 carbon reacts with oxygen to form carbon dioxide	ACCEPT word or chemical equations for both marks ALLOW coke for carbon in M1 and M2 ALLOW carbon dioxide is formed by the decomposition of limestone/word or chemical equation to show this	2
	M2 carbon dioxide reacts with carbon to form carbon monoxide	ALLOW (carbon monoxide is formed by) incomplete combustion of carbon/coke or chemical equation to show this for 1 mark Carbon reacts with oxygen alone is insufficient	

Question number	Answer	Notes	Marks
7 (d)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	ACCEPT multiples and fractions	2
	M1 correct formulae		
	M2 correct balancing		
	M2 dependent on M1		

Total for Question 7 = 13

	Quest numb		Answer	Notes	Marks
8	(a)	(i)	thermometer	ALLOW Bunsen (burner)	1
		(ii)	M1 to cool the vapour(s)/gas(es)M2 (and) to condense it/turn it to liquid		2
	(b)	(i)	(Fraction) A	ALLOW (boiling point) 30-60	1
		(ii)	(Fraction) A	ALLOW (boiling point) 30-60	1
	(c)	(i)	C ₁₀ H ₂₂	Penalise incorrect use of case/superscripts etc	1
		(ii)	C_nH_{2n+2}		1

	Questi numb		Answer	Notes	Marks
8	(d)	(i)	$C_{14}H_{30} \rightarrow C_8H_{18} + 2 C_3H_6$	ALLOW $C_3H_6 + C_3H_6$	
			M1 C ₃ H ₆		
			M2 fully correct equation	ALLOW 1 mark for $C_2H_4 + C_4H_8$ or C_6H_{12} in fully correct equation	2
		(ii)	M1 silica / alumina	ACCEPT aluminium oxide/silicon dioxide /Al ₂ O ₃ /SiO ₂ / aluminosilicate(s)/zeolite(s)	2
			M2 600-700 (°C)	aidiffifiosificate(3)/2eoffce(3)	
				ACCEPT any temperature in the range 600 to 700 inclusive	

Total for Question 8 = 11

Question number	Answer	Notes	Marks
9 (a) (i)	no change/no reaction OWTTE		1
(ii)	most sodium magnesium zinc least platinum	ACCEPT correct symbols	1
(iii)	(when mixed with air) burns with pop	Must be reference to test and result ACCEPT lighted spill/splint and pop REJECT glowing spill/splint IGNORE squeaky pop test alone	1
(iv)	magnesium + hydrochloric acid → magnesium chloride + hydrogen	ACCEPT correct chemical equation	1
(v)	explodes/violent (reaction)	ALLOW dangerous/unsafe ALLOW sodium too reactive/very reactive/reaction too vigorous	1

Question number	Answer	Notes	Marks
9 (b) (i)	Any 2 from		2
	M1 brown/pink/pink-brown solid formed	ACCEPT brown/pink/pink-brown coating on zinc	
		ALLOW brown/pink/pink-brown precipitate	
	Ma (bloc) colution towns coloudos (is decolousis ed./	ALLOW red-brown	
	M2 (blue) solution turns colourless/is decolourised / colour of solution fades/turns paler (blue)	REJECT incorrect initial colour of solution	
	M3 zinc metal gets smaller	ALLOW zinc dissolves/disappears	
		IGNORE bubbles/effervescence	
(ii)	M1 don't know whether zinc or nickel is more reactive		2
	M2 because no experiment was done between a zinc salt and nickel/ a nickel salt and zinc OWTTE	ALLOW no experiment was done to compare zinc and nickel/need to do experiment to compare zinc and nickel OWTTE	

Question number	Answer	Notes	Marks
9 (c)	M1 zinc/Zn loses electrons	ALLOW correct explanations in terms of oxidation number changes	3
	 M2 copper ion/Cu²⁺ gains electrons M3 zinc/Zn is oxidised and copper/Cu (ion)/Cu²⁺ is 	ACCEPT correct half equations for M1 and M2	
	reduced	ALLOW both oxidation and reduction occur (at same time/in same reaction)	
		IGNORE references to loss and gain of oxygen	

Total for Question 9 = 12

Question number	Answer	Notes	Marks
10 (a) (i)	M1 in nitrogen/in an element all atoms contain the same number of protons/have the same atomic number	ALLOW nitrogen / an element contains only one type of atom	2
		ALLOW nitrogen only contains nitrogen atoms	
	M2 ammonia contains two elements/two different types of atoms/N and H (chemically) bonded together/chemically combined	ACCEPT contains atoms with different numbers of protons/different atomic numbers	
(ii)	M1 (X) hydrogen	ALLOW H ₂ IGNORE H	2
	M2 (raw material) natural gas	ALLOW methane/hydrocarbons/water/steam	
(iii)	Iron/Fe		1
(iv)	catalyst	ACCEPT references to speed up reaction IGNORE lowers activation energy	1

Question number	Answer	Notes	Marks
10 (b) (i)	neutralisation	ACCEPT acid-base IGNORE exothermic	1
(ii)	M1 ammonium sulfate M2 (NH ₄) ₂ SO ₄	REJECT ammonium sulf ite /sulf ide	2
(iii)	M1 add (aqueous) sodium hydroxide/NaOH	If incorrect or no reagent 0 marks ALLOW other alkalis ACCEPT pH/UI paper	3
	M2 test gas/ammonia with (moist/damp) red litmusM3 (litmus) turns blue	ACCEPT indigo/violet/purple if pH paper used	
		If implication that they are testing the solution with litmus no M2 or M3	

Question number	Answer	Notes	Marks
10 (c)	M1 liquid occupies smaller volume OWTTE	ACCEPT particles in liquid closer together ORA	2
	M2 so can transport larger mass/amount (in same size container)	ACCEPT liquid more dense than gas	
	OR		
	M1 gas transported under pressure		
	M2 risk of explosion / leakage		
(d) (i)	enthalpy change	ACCEPT heat (energy) change/thermal energy change	1
		IGNORE energy change IGNORE enthalpy alone	
(ii)	(forward) reaction exothermic	ACCEPT backward reaction is endothermic	1
(iii)	more moles (of gas) on right hand side/product side ORA	ACCEPT 9 moles on LHS and 10 moles on RHS	1
		ALLOW molecules/particles for moles	

Question number	Answer	Notes	Marks
10 (e)	M1 it is a fertiliser/ it contains nitrogen	ALLOW it provides nitrate ions	2
	M2 and therefore increases crop yield / provides essential nutrients for plant growth	ALLOW helps crops/plants grow faster/increases plant growth	
		ALLOW for plants to make amino acids/proteins	

Total for Question 10 = 19

Question number	Answer		Notes	Marks
11 (a) (i	Pb(NO ₃) ₂ + 2KNO ₃	(aq) + K ₂ CrO ₄ (aq) → PbCrO ₄ (s) (aq)		1
(ii	2-/CrO ₄ ²⁻		ACCEPT -2/CrO ₄ -2	1
(b) (i	Height of precipitate in cm 2 -	2 4 6 8 10 12 14 16 18 Volume of lead(II) nitrate solution in cm ³	M1& M2 all eleven points plotted to nearest gridline Deduct 1 mark for each error	2
(ii	anomalou	s point (at 2.1, 14) circled		1
(iii	points dra with a M2 best the drawn	fit straight line through first 6 wn aid of a ruler fit straight line through last 5 points aid of a ruler	No penalty if lines do not cross or if the two straight lines are joined by a curve	2
			Penalise lack of use of a ruler once only	

Question number			Answer	Notes	Marks
11	(b)	(iv)	volume from candidate's graph to \pm 0.2 cm ³	Do not award mark if lines do not cross.	1
		(v)	Any 2 from		2
			M1 started with less than 5cm³ potassium chromate		
			M2 added too little lead(II) nitrate		
			M3 precipitate not left for long enough to settle	If no other mark scored allow 1 mark for misread volume/misread height	
	(c)	(i)	M1 filter (off the precipitate)	ALLOW 'decant'	3
			M2 wash <u>precipitate/solid/lead(II) chromate</u> (with distilled/deionised/pure water)	REJECT refs to crystallisation for M2 and M3	
			M3 dry in a (warm) oven / leave to dry / dry with filter paper	REJECT any direct method of heating with a flame, eg Bunsen burner	
		(ii)	M1 flame test M2 lilac	ACCEPT description of flame test IGNORE burn ALLOW purple/pink	2

Question number	Answer	Notes	Marks
11 (d)	M1 $n[KI] = 5.0 \times 0.90/1000 = 0.0045 \text{ (mol)}$	Correct answer without working scores 3 marks	3
	M2 $n[(Pb(NO_3)_2] = \frac{1}{2} \times M1 = 0.00225 \text{ (mol)}$		
	M3 conc ⁿ [Pb(NO ₃) ₂] = M2 x1000/8 = 0.28 (mol/dm ³)	ACCEPT any number of sig figs, correctly rounded, except 1 Calculator value is 0.28125	
		0.56(25) and 1.1(25) both score 2 marks	

Total for Question 11 = 18

		www.dynamicpapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom