Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Level In Chemistry (WCH05) Paper 01
General Principles of Chemistry II Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WCH05_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark		
$\mathbf{1}$	The only correct answer is D	(1)		
	A is not correct because the electrode is wrong and Mn^{2+} ions are \boldsymbol{B} is not correct because the electrode is wrong the solution			
\boldsymbol{C} is not correct because Mn^{2+} ions are missing from the solution			\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{2}$	The only correct answer is C \boldsymbol{A} is not correct because the oxidation number of Cr is +3 and Mn is +2	(1)
\boldsymbol{B} is not correct because the oxidation number of Cr is +6 and Ti		
is +3		
\boldsymbol{D} is not correct because the oxidation number of Cr is +6 and Mn is +7		

Question Number	Correct Answer	Mark
$\mathbf{3}$	The only correct answer is A \boldsymbol{B} is not correct because the oxidation number should be $+3-2=$ +1	(1)
\boldsymbol{C} is not correct because the oxidation number should be $+3-2=$ +1 \boldsymbol{D} is not correct because the oxidation number should be $+3-2=$ +1		

Question Number	Correct Answer	Mark
$\mathbf{4 (a)}$	The only correct answer is A	(1)
	\boldsymbol{B} is not correct because the complex is linear	
\boldsymbol{C} is not correct because the complex is square planar		
\boldsymbol{D} is not correct because the complex is octahedral		

Question Number	Correct Answer	Mark
$\mathbf{4 (\mathbf { b })}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because the oxidation number of the metal is +3	
	\boldsymbol{C} is not correct because the oxidation number of the metal is +2	
	\boldsymbol{D} is not correct because the oxidation number of the metal is +4	

Question Number	Correct Answer	Mark
$\mathbf{5 (a)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because it is not $-4 / 2$	
	\boldsymbol{B} is not correct because it is not $-4 / 2$	
	\boldsymbol{D} is not correct because it is not $-4 / 2$	

Question Number	Correct Answer	Mark
$\mathbf{5 (b)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because incorrect number of Z ligands B is not correct because incorrect number of Z ligands and incorrect charge \boldsymbol{D} is not correct because incorrect charge	

Question Number	Correct Answer	Mark
$\mathbf{6 (a)}$	The only correct answer is A \boldsymbol{B} is not correct because although copper(I) oxide is reddish brown, it is an incorrect product	(1)
	\boldsymbol{C} is not correct because copper(II) oxide is black not brownand it is an incorrect product	
\boldsymbol{D} is not correct because zinc sulfate is white not brown		

Question Number	Correct Answer	Mark
$\mathbf{6 (b)}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because it is not a white solid	
\boldsymbol{C} is not correct because it is not a white solid		
\boldsymbol{D} is not correct because it is soluble		

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is B	(1)
	A is not correct because it is not an addition reaction C is not correct because not it is not a nucleophilic or addition reaction \boldsymbol{D} is not correct because it is not a nucleophilic reaction	

Question Number	Correct Answer	Mark
$\mathbf{8 (a)}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because this is the wrong product	
\boldsymbol{B} is not correct because this is the wrong product		
\boldsymbol{C} is not correct because this is the wrong product		

Question Number	Correct Answer	Mark
$\mathbf{8 (b)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because it is electrophilic not nucleophilic \boldsymbol{B} is not correct because electromeric effect outweighs inductive effect \boldsymbol{D} is not correct because it is a nucleophile not an electrophile	

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline \mathbf{9 (a)} & \text { The only correct answer is A } & \text { (1) } \\ & \boldsymbol{B} \text { is not correct because the locants are incorrect } & \\ & \boldsymbol{C} \text { is not correct because there are no locants for the amine groups } \\ & \boldsymbol{D} \text { is not correct because there are no locants for the amine groups }\end{array}\right]$

Question Number	Correct Answer	Mark
$\mathbf{9 (b)}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because there is no carbonyl group	
	\boldsymbol{B} is not correct because there is no carbonyl group	
\boldsymbol{C} is not correct because the amide groups are incorrect		

Question Number	Correct Answer	Mark
$\mathbf{1 0 (a)}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because it is not an acid	
\boldsymbol{B} is not correct because it is not an acid		
\boldsymbol{D} is not correct because it is optically active		

Question Number	Correct Answer	Mark
$\mathbf{1 0 (b)}$	The only correct answer is A	(1)
	\boldsymbol{B} is not correct because Q forms phenol	
	\boldsymbol{C} is not correct because R does not form sodium benzoate	

Question Number	Correct Answer	Mark
$\mathbf{1 1 (a)}$	The only correct answer is B \boldsymbol{A} is not correct because it is a primary alcohol and should be a secondary alcohol	(1)
\boldsymbol{l} is not correct because it is a primary alcohol and should be a		
secondary alcohol		
D is not correct because it is a tertiary alcohol and should be a secondary alcohol		

Question Number	Correct Answer	Mark
$\mathbf{1 1 (b)}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because there would be no loss of carbon atom	
	\boldsymbol{C} is not correct because there would be no loss of carbon atom	
\boldsymbol{D} is not correct because there would be no loss of carbon atom		

Question Number	Correct Answer	Mark
$\mathbf{1 1 (c)}$	The only correct answer is D \boldsymbol{A} is not correct because this does not react with propanoic acid to give propanoyl chloride	(1)
B is not correct because this does not react with propanoic acid to give propanoyl chloride	C is not correct because this does not react with propanoic acid to give propanoyl chloride	

Question Number	Correct Answer	Mark
$\mathbf{1 1 (d)}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because it is not branched	
	\boldsymbol{C} is not correct because it is not an amine	
\boldsymbol{D} is not correct because it is not an amine		

Section B

Question Number	Acceptable Answers	Reject	Mark
12(a)(i)	$\begin{align*} & \left(\mathrm{Al}^{3+} 1 \mathrm{~s}^{2}\right) 2 s^{2} 2 \mathrm{p}^{6} \tag{1}\\ & \left(\mathrm{Fe}^{3+} 1 \mathrm{~s}^{2}\right) 2 s^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{5} \tag{1} \end{align*}$ ALLOW $2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{2} / 3 p_{x}{ }^{2} 3 p_{y}{ }^{2} 3 p_{z}{ }^{2}$ ALLOW $4 s^{0}$ included in $\mathrm{Fe}^{3+} /$ any other orbitals with 0 electrons IGNORE $1 \mathrm{~s}^{2}$ written again		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (a) (i i)}$	The increase in ionisation energy is balanced by an increase in hydration/lattice enthalpy	Just 'iron is a transition element'	(1)
	ALLOW There is (only) a gradual/ small increase in (successive) ionisation energies for iron OR Iron has (several removable) d electrons of similar energies OR The 4s / 3d electrons / orbitals have similar energies (for iron) OR The energy difference / gap between 4s and 3d is small (for iron) OR The ionisation energies are similar (for iron)	IGNORE References to stability of half-full $d-$ subshell / References to 3p electrons	

Question Number	Acceptable Answers	Reject	Mark
*12(b)	First mark - splitting (3)d orbitals /(3)d subshell are/is split (in energy by the ligands) ALLOW "d orbital splitting" IGNORE Just 'there is an energy difference between the (3) d orbitals' Second mark - absorption Electrons / photons absorb energy ALLOW Electrons absorb (visible) light Frequencies / wavelengths (of visible light) are absorbed Third mark - promotion Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move (from lower) to higher energy (d) orbital(s) / levels ALLOW d-d transitions occur / Electrons are excited to higher energy (d) orbital(s) / levels Fourth mark - colour Reflected / transmitted / remaining light is coloured / is in the visible region ALLOW Complementary colour seen (The frequency of) reflected / transmitted / remaining light is seen IGNORE Reference to electrons relaxing / dropping to the ground state / any reference to aluminium	d orbital 'singular' is split d shell is split Penalise omission of (3)d only in First mark	(4)

Question Number	Acceptable Answers	Reject	Mark
12(c)(i)	3D octahedral shape Recognisable 3D octahedral shape ALLOW Wedges/dots instead of dashed lines going into the page or other recognisable representations Note The word 'octahedral' does not rescue a poor diagram Oxygen atoms 6 oxygen atoms joined to Fe (with or without lone pairs) ALLOW $\mathrm{O}_{2} \mathrm{H}$ Oxygens to Fe joined by single bonds / arrows for this mark IGNORE Omission of brackets and charge Incorrect charge Name of shape, even if incorrect	Negative charge on O	(2)

Question	Acceptable Answers	Reject	Mark
12(d)	First mark - electron deficient (The aluminium atom in) AlCl_{3} has an empty (p) orbital (in the outer shell) / is electron deficient / has 6 electrons (in the outer shell) ALLOW 6 electrons shown around AI on a diagram IGNORE Just ' AlCl_{3} has an incomplete (p) subhell' Second mark - bond It can accept a pair of / two electrons (from chlorine) OR Chlorine donates a pair of / 2 electrons (to AlCl_{3}) OR It form a dative (covalent) bond (with chlorine) ALLOW Mention of chloride ion IGNORE diagram	Reference to 3d / 3s orbitals Reference to aluminium ion Reference to 'an electron' Chlorine molecule $/ \mathrm{Cl}_{2}$	(2)
Question Number	Acceptable Answers	Reject	Mark
12(e)(i)	Ligand exchange (reaction) OR Ligand substitution (reaction) OR Ligand replacement (reaction) Both words needed for the mark	Ligand change Ligand reaction Oxidation Reduction Redox	(1)

Question Number	Acceptable Answers	Reject	Mark
12(e)(ii)	Dot-and-cross diagram ALLOW Any symbols for electrons Bonds shown with 2 electrons on each e.g. \underline{x} IGNORE Missing brackets and charge Structure and charge ${ }^{-} \mathrm{S}-\mathrm{C} \equiv \mathrm{N}$ OR $\mathrm{S}=\mathrm{C}=\mathrm{N}^{-}$ Bonds correct and negative charge shown or stated on correct atom ALLOW This mark if bonds also shown in dot-and-cross diagram and negative charge on correct atom		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (e) (i i i) ~}$	Dative covalent bond / bond from lone pair (of electrons) on sulfur/S and from nitrogen/N (to an empty orbital in Fe^{3+})	(1)	
IGNORE Ionic bond			

Question Number	Acceptable Answers	Reject	Mark
12(f)	Ionic equation with hydrochloric acid $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}^{+} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\begin{align*} & \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{H}^{+} \rightarrow \mathrm{Al}^{3+}+6 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{H}^{+} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+} \\ & \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \tag{1} \end{align*}$ IGNORE $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ Ionic equation with sodium hydroxide $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{AlO}_{2}^{-}+2 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$ ALLOW $\begin{align*} & \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}(\mathrm{OH})_{3}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{5}\right]^{--} \\ & \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{5}\right]^{2-}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HO}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-} \\ & \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$ If no other mark awarded, ALLOW 1 mark for two non-ionic / partially ionic equations e.g. $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaAl}(\mathrm{OH})_{4}$ IGNORE State symbols, even if incorrect / missing square brackets		(2)

(Total for Question 12 = 19 marks)

Question Number	Acceptable Answers	Reject	Mark
13(a)(i)*	The methods below illustrate the allocation of marks. However, the marks may be scored by any correct method Correct molecular formulae with some working involving $\mathrm{C} / \mathrm{CO}_{2}$, $\mathrm{H} / \mathrm{H}_{2} \mathrm{O}$ and either O or use of 90 and subtraction of A_{r} of C and H / COOH scores full marks Correct molecular formula with no working scores (1) Method 1 $\mathrm{mol} \mathrm{CO}_{2}=3.30 / 44=0.075(=\mathrm{mol} \mathrm{C})$ mol $\mathrm{H}_{2} \mathrm{O}=1.35 / 18=0.075$ and mol $\mathrm{H}=2 \times \mathrm{mol} \mathrm{H} \mathrm{O}=0.150$ or ratio $\mathrm{C}: \mathrm{H}=1: 2$ mass $0=2.25-((12 \times 0.075)+(1 \times 0.150))=1.2(\mathrm{~g})$ $\mathrm{mol} 0=1.2 / 16=0.075$ Method 2 mass $C=3.30 \times 12 / 44=0.90(\mathrm{~g})$ and $\mathrm{mol} C=0.90 / 12=0.075$ mass $\mathrm{H}=1.35 \times 2 / 18=0.15(\mathrm{~g})$ and $\mathrm{mol} \mathrm{H}=0.15 / 1=0.15$ mass $0=2.25-(0.90+0.15)=1.2(\mathrm{~g})$ $\mathrm{mol} 0=1.2 / 16=0.075$ Empirical and molecular formulae from Methods 1 and 2 Empirical formula $=\mathrm{CH}_{2} \mathrm{O}$ Relative empirical formula mass $\mathrm{CH}_{2} \mathrm{O}$ $\begin{equation*} =12+(2 \times 1)+16=30 \tag{1} \end{equation*}$ So, molecular formula is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ TE on incorrect moles but the ratio must be a whole number Method 3 $\mathrm{mol} \mathrm{T}=2.25 / 90=0.025$ $\mathrm{mol} \mathrm{CO} 2=3.30 / 44=0.075(=\mathrm{mol} \mathrm{C})$ mol ratio $\mathrm{T}: \mathrm{C} / \mathrm{CO}_{2}=1: 3$ mol $\mathrm{H}_{2} \mathrm{O}=1.35 / 18=0.075$ and mol $\mathrm{H}=2 \times \mathrm{mol} \mathrm{H}_{2} \mathrm{O}=0.150$ or mol ratio $\mathrm{C}: \mathrm{H}=1: 2 / 3: 6$ $90-(36+6)=48$ and $\mathrm{mol} 0=48 / 16=3$ So, molecular formula is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$		(6)

Question Number	Acceptable Answers	Reject	Mark
13(a)(ii)	Any two of (1 mark for each structure)	Extra bonds once only e.g. $-\mathrm{COOH}^{+}$	(2)
Negative			
charge or			
omission of			
charge once			
only			

Question Number	Acceptable Answers	Reject	Mark
13(a)(iii)	Structure of compound T: IGNORE Connectivity of the OH group Explanation: Use of peak ratio Use of peak ratio e.g. protons A and D are ratio 1 : 1 (as they are single protons) and protons B and C are ratio $2: 2$ (as there are two protons in each environment) ALLOW Ratio of protons/hydrogens is $1: 2: 2: 1$ Proton environments identified 4 proton environments clearly identified by symbols or words e.g. Note If compound \mathbf{T} is identified as lactic acid, (1) mark awarded for identification of four proton environments only e.g. No TE on any other structure		3

Question Number	Acceptable Answers	Reject	Mark
13(b)(ii)	 OR First mark One correct ester linkage (as circled above) Second mark Conditional on one (or more) ester linkage Rest of structure correct with 2 repeat units and extension bonds ALLOW $\mathrm{C}_{6} \mathrm{H}_{5}$ for benzene ring IGNORE Brackets and n / bond lengths and bond angles	Os at both ends or no O at either end loses second mark only	(2)

(Total for Question 13 = 18 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (a) (i)}$	$\mathrm{V}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}_{2^{+}}+4 \mathrm{H}^{+}+3 \mathrm{e}^{(-)}$ ALLOW Multiples Reversible arrow, provided equation written in the direction shown $\mathrm{V}^{2+}+2 \mathrm{H}_{2} \mathrm{O}-3 \mathrm{e}^{(-)} \rightarrow \mathrm{VO}_{2^{+}}+4 \mathrm{H}^{+}$	(1)	
IGNORE State symbols even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
14(a)(ii)	First mark - reducing agent Reducing agent: $\mathrm{Fe}^{2+}((\mathrm{aq}))$ / iron(II) (ions) This can be shown in an equation Justification: Second mark - V(V) to V(IV) $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ electrode potential / SEP / E^{\ominus} value is less positive / lower than the $\mathrm{VO}_{2}{ }^{+} / \mathrm{VO}^{2+}$ value / $(+) 0.77<(+) 1.00($ so $\mathrm{V}(\mathrm{V})$ is reduced to $\mathrm{V}(\mathrm{IV})$) OR $\mathrm{VO}_{2}{ }^{+} / \mathrm{VO}^{2+}$ electrode potential / SEP / E^{\ominus} value is more positive / greater / higher than the $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ value / (+) $1.00>(+) 0.77$ (so $\mathrm{V}(\mathrm{V})$ is reduced to $\mathrm{V}(\mathrm{IV})$) OR E^{\ominus} cell for the reaction between $\mathrm{VO}_{2}{ }^{+}$and Fe^{2+} is positive $/(+) 0.23 \mathrm{~V} />0($ so $\mathrm{V}(\mathrm{V})$ is reduced to V(IV)) ALLOW Any of the above 3 explanations if $\mathrm{SO}_{2}, \mathrm{Zn}, \mathrm{V}^{3+}$ or V^{2+} chosen as reducing agent e.g. E° for $\mathrm{SO}_{2} / \mathrm{SO}_{4}{ }^{2-}$ $=(+) 0.83$ or E^{\ominus} for $\mathrm{Zn} / \mathrm{Zn}^{2+}=(+) 1.76$ or E^{\ominus} for $\mathrm{V}^{3+} /$ $\mathrm{VO}^{2+}=(+) 0.66$ or E^{θ} for $\mathrm{V}^{2+} / \mathrm{V}^{3+}=(+) 1.26$ (so $\mathrm{V}(\mathrm{V})$ is reduced to $\mathrm{V}(\mathrm{IV})$) Third mark - V(IV) to V(III) $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ electrode potential / SEP / E^{\ominus} value is more positive / greater / higher than the $\mathrm{VO}^{2+} / \mathrm{V}^{3+}$ value / (+)0.77 > (+)0.34 (so V(IV) is not reduced to V (III)) OR $\mathrm{VO}^{2+} / \mathrm{V}^{3+}$ electrode potential / SEP / E^{\ominus} value is less positive / lower than the $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ value / $(+) 0.34<(+) 0.77$ (so $\mathrm{V}(\mathrm{IV})$ is not reduced to $\mathrm{V}(\mathrm{III})$) OR E° cell for the reaction between VO^{2+} and Fe^{2+} is negative / $-0.43 \mathrm{~V} /<0$ (so $\mathrm{V}(\mathrm{IV})$ is not reduced to V(III))	Incorrect value Incorrect value	(3)

Question Number	Acceptable Answers	Reject	Mark
14(a)(iii)	First mark - equation $2 \mathrm{~V}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{V}^{2+}+\mathrm{VO}^{2+}+2 \mathrm{H}^{+}$ ALLOW Multiples Reversible arrow, provided reaction is written in the direction shown IGNORE State symbols even if incorrect Cancelled / crossed out electrons Second mark - E° cell value $E_{\text {cell }}{ }^{\circ}=-0.26-0.34=-0.6(0)(\mathrm{V})$ NO TE on equation written in reverse Third mark - feasibility E^{\ominus} cell is negative / <0 and so the disproportionation is not feasible / V^{2+} and VO^{2+} will react to form V^{3+} ALLOW this mark even if an incorrect negative value is calculated for E^{\ominus} cell TE on a positive value for $E^{\ominus}{ }_{\text {cell }}$ e.g. E^{\ominus} cell is positive / > and so the disproportionation is feasible	Equation with uncancelled electrons	(3)

Question Number	Acceptable Answers	Reject	Mark
14(b)(i)	Correct answer, with or without working scores both marks First mark - mol $\mathbf{I}_{\mathbf{2}}$ Mol S $\mathrm{O}_{3}{ }^{2-}$ used $=24.20 \times 0.100 / 1000$ $=0.00242 / 2.42 \times 10^{-3}$ and $\begin{equation*} \text { Mol } I_{2}=0.00242 / 2=0.00121 / 1.21 \times 10^{-3} \tag{1} \end{equation*}$ Second mark - conc Br_{2} ($\mathrm{Mol} \mathrm{Br} r_{2}=\mathrm{mol} \mathrm{I}_{2}=0.00121$) Conc $\mathrm{Br}_{2}=0.00121 \times 1000 / 25.0=0.0484(\mathrm{~mol}$ dm^{-3}) TE on $\mathrm{mol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ and $\mathrm{mol} \mathrm{I}_{2}$ IGNORE SF except 1SF		(2)

Question Number	Acceptable Answers	Reject	Mark
14(b)(ii)	Allow correct expressions if intermediate values not evaluated First mark - original mol Br_{2} Original $\mathrm{mol} \mathrm{Br}_{2}=100.0 \times 0.0484 / 1000$ $\begin{equation*} =0.00484 / 4.84 \times 10^{-3} \tag{1} \end{equation*}$ TE on conc Br_{2} in (i) $\begin{array}{\|l} \begin{array}{l} \text { Second mark }- \text { mol I I }_{2} \\ \text { Mol S } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \text { used }= \\ \\ \text { 16.80 } \times 0.100 / 1000 \\ \text { and } \\ =0.00168 / 1.68 \times 10^{-3} \\ \mathrm{Mol} \mathrm{I}_{2}=0.00168 / 2=0.00084 / 8.4 \times 10^{-4} \end{array} \end{array}$ Third mark - mol Br_{2} reacted $\left(\mathrm{mol} \mathrm{Br}_{2}\right.$ in excess $\left.=\mathrm{mol}_{2}=0.00084\right)$ $\mathrm{Mol} \mathrm{Br}_{2}$ reacted with $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ $\begin{align*} & =0.00484-0.00084 \\ & =0.00400 / 4.00 \times 10^{-3} \tag{1} \end{align*}$ TE on original mol Br_{2} and $\mathrm{mol}_{2} / \mathrm{Br}_{2}$ in excess Fourth mark - mol ratio Mole ratio $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$: Br_{2} $\begin{align*} & =0.00100: 0.00400 \\ & =1: 4 \tag{1} \end{align*}$ TE on $\mathrm{mol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ and $\mathrm{mol} \mathrm{Br}_{2}$ reacted Fifth mark - equation - stand alone $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+4 \mathrm{Br}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{Br}^{-}$ ALLOW $8 \mathrm{HBr}+2 \mathrm{Br}^{-}$on RHS No TE on incorrect mol ratio IGNORE State symbols even if incorrect		(5)

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i)}$	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$ ALLOW symbols in any order, i.e. $\mathrm{C}_{15} \mathrm{O}_{4} \mathrm{H}_{12}$, $\mathrm{H}_{12} \mathrm{O}_{4} \mathrm{C}_{15}, \mathrm{H}_{12} \mathrm{C}_{15} \mathrm{O}_{4}$, $\mathrm{O}_{4} \mathrm{H}_{12} \mathrm{C}_{15}, \mathrm{O}_{4} \mathrm{C}_{15} \mathrm{H}_{12}$	Numbers written as superscripts e.g. $\mathrm{C}^{15} \mathrm{H}^{12} \mathrm{O}^{4}$	(1)
	IGNORE Any other formulae as working		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i i)}$		Any additional carbon atoms indicated	(1)
	ALLOW Any way of identifying the chiral carbon, including a circle, provided that it does not include any other carbon atoms		

| Question |
| :--- | :--- | :--- | :--- |
| Number |

Question Number	Acceptable Answers	Reject	Mark
15(c)(i)	 OR OR IGNORE Missing Cl^{-}on the structures shown above	+ on wrong nitrogen atom Covalent bond to Cl	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (c) (i i)}$	(alcoholic / ethanolic) ammonia / NH3 ALLOW Aqueous ammonia / $\mathrm{NH}_{3}(\mathrm{aq})$ IGNORE Concentration / heat	(1)	

Question Number	Acceptable Answers	Reject	Mark
15(c)(iii)		$\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH}^{+} \\ & \mathrm{CH}_{4} \mathrm{O}^{+} \end{aligned}$	(1)

Question Number	Acceptable Answers	Reject	Mark
15(c)(iv)	Bond between N and Na or between O and Na	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (d) (\mathbf { i })}$	Bond between N and Cl		
ALLOW displayed, structural or skeletal formula or any combination of these ALLOW $-\mathrm{NH}_{3} \mathrm{Cl}$ as side group IGNORE Missing Cl- ions			

Question Number	Acceptable Answers	Reject	Mark
15(d)(ii)	 ALLOW No charges, provided there is no bond between O and Na ALLOW Displayed, structural or skeletal formula or any combination of these e.g. $\mathrm{COONaCH} 2 \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COONa}$ IGNORE Missing Na^{+}ions	```Partial charges \delta+ / \delta-```	(1)

Question Number	Acceptable Answers	Mark
I5(d)(iii)	OR Any one amide/peptide link shown e.g. Do not award this mark if other functional groups are joined directly to the amide Rest of structure correct ALLOW Displayed or structural formula or any combination of these IGNORE Bond angles and bond lengths	(2)

Question Number	Acceptable Answers	Reject	Mark
15(d)(iv)	Methanol OR Any unambiguous formula e.g. $\mathrm{CH}_{3} \mathrm{OH} /$ If name and formula are given, both must be correct	$\mathrm{CH}_{4} \mathrm{O}$	(1)

Question Number	Acceptable Answers	Reject	Mark
15(e)(i)	LiAlH_{4} / lithium tetrahydridoaluminate / lithium aluminium hydride (in dry ether) OR NaBH_{4} / sodium tetrahydridoborate / sodium borohydride (in aqueous / alcohol solution) IGNORE Lithal / heat	LiAlH_{4} in water / aqueous solution Just ' $[\mathrm{H}] / \mathrm{H}^{-}$‘	(1)

| Question
 Number | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 5 (e) (i i i)}$ | (1) | |

