Mark Scheme (Results)

January 2018

Pearson Edexcel International
Advanced Level In Chemistry (WCH01)
Paper 01 The Core Principles Of
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WCH01_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because this area is for ionisation	
	\boldsymbol{C} is not correct because this area is for deflection	
\boldsymbol{D} is not correct because this area is for detection		

Question Number	Correct Answer	Mark
$\mathbf{2}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because this is for the +3 ion	
	\boldsymbol{B} is not correct because this is for the +2 ion	
\boldsymbol{C} is not correct because this is for the atom		

Question Number	Correct Answer	Mark
3(a)	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because this is an s block element	
\boldsymbol{B} is not correct because this is a d block element		
\boldsymbol{D} is not correct because this has 4 electrons in its p		
subshell		

\hline\end{array}\right.\)

Question Number	Correct Answer	Mark
$\mathbf{3 (b)}$	The only correct answer is B \boldsymbol{C} is not correct because W bonding type is incorrect bonding	(1)
D is not correct because Z is not ionic and $W Z$ is not covalent		

Question Number	Correct Answer	Mark
4(a)	The only correct answer is C \boldsymbol{A} is not correct because this percentage is only for 3 oxygen atoms	(1)
B is not correct because this percentage is only for 5 oxygen atoms	D is not correct because this percentage uses 279.4 instead of 297.4	

Question Number	Correct Answer	Mark
$\mathbf{4 (b)}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because this is only for one ion	
	\boldsymbol{B} is not correct because this is only for two ions	
\boldsymbol{C} is not correct because this is only for three ions		

Question Number	Correct Answer	Mark
4(c)	The only correct answer is D	(1)
	A is not correct because there are two moles of carbonate requiring neutralisation and not $1 / 2 \mathrm{~mol}$	B is not correct because there are two moles of carbonate requiring neutralisation and not one mol
C is not correct because there are two moles of carbonate requiring neutralisation and not $11 / 2 \mathrm{~mol}$		

Question Number	Correct Answer	Mark
$\mathbf{5}$	The only correct answer is B \boldsymbol{A} is not correct because the 4:6 ratio has been omitted \boldsymbol{C} is not correct because the wrong ratio of 4:1 has been used \boldsymbol{D} is not correct because the '4' of the 4:6 ratio has not been used	(1)

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is C	(1)
	A is not correct because the number of moles 0.394 has been incorrectly divided by four and then used	B is not correct because the wrong number of moles, 0.100, has been used
D is not correct because 0.100 has been multiplied by four to give 0.400 and then used instead of the limiting 0.394 mol		

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is B	(1)
	A is not correct because lithium has weaker bonding than boron \mathbf{C} is not correct because nitrogen is a gas D is not correct because neon is a gas	

Question Number	Correct Answer	Mark
$\mathbf{8}$	The only correct answer is A \boldsymbol{B} is not correct because gloves do not lower the risk of a gas \boldsymbol{C} is not correct because goggles do not lower the risk of a gas \boldsymbol{D} is not correct because this is not the best way to reduce the risk but exposes more to it	(1)

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline \mathbf{9} & \text { The only correct answer is B } & \text { (1) } \\ & \text { A is not correct because this is ionic bonding } \\ & \mathbf{C} \text { is not correct because this is covalent bonding } \\ & \text { D is not correct because this is dative covalent bonding }\end{array}\right]$

Question Number	Correct Answer	Mark		
$\mathbf{1 0}$	The only correct answer is A	(1)		
\boldsymbol{B} is not correct because these are the spectator ions				
\boldsymbol{C} is not correct because this equation includes the				
spectator ions				
\boldsymbol{D} is not correct because this equation includes the				
spectator ions			\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{1 1 (a)}$	The only correct answer is C A is not correct because this is 50.5 as a percentage of all of the molar masses in the equation	(1)
B is not correct because this is the atom economy for the production of hydrogen chloride instead of chloromethane	D is not correct because this is 50.5 divided by the molar mass of chlorine	

Question Number	Correct Answer	Mark
11(b)	The only correct answer is \mathbf{C} \boldsymbol{A} is not correct because this is the number of moles of the product times by one hundred \boldsymbol{B} is not correct because this is the number of moles of the reactant times by one hundred D is not correct because this is the reactant mass as a percentage of the product mass	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 1 (c)}$	The only correct answer is A B is not correct because there is no unpaired electron on the carbon	(1)
\boldsymbol{C} is not correct because this is the methane molecule		
\boldsymbol{D} is not correct because this is the methyl anion		

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	The only correct answer is A \boldsymbol{B} is not correct because the ΔH_{3} should be subtracted not added	(1)
\boldsymbol{C} is not correct because the enthalpy values should not be halved	D is not correct because enthalpy values should not be halved nor added	

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	The only correct answer is C \boldsymbol{A} is not correct because this is the use of only $3 x N-H$ instead of $6 x$ \boldsymbol{B} is not correct because this is the use of $2 x N \equiv N$ instead of $1 x$ \boldsymbol{D} is not correct because this is the use of only $2 x H-H$ instead of $3 x$	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	The only correct answer is C A is not correct because there will be significant heat loss \boldsymbol{B} is not correct because there will be significant heat loss	(1)
\boldsymbol{D} is not correct because there will be significant heat loss		

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	The only correct answer is D	(1)
A is not correct because the blue copper ions move towards the cathode	B is not correct because the blue copper ions move towards the cathode and there are no yellow ions	C is not correct because the sulfate ions are colourless and not yellow

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i)}$	(Different) boiling temperatures / boiling points IGNORE Chain length/intermolecular forces/ mass of alkane	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i i)}$	Methane/ethane/propane/butane/methylpropane ALLOW Formulae $\mathrm{CH}_{4} / \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{C}_{4} \mathrm{H}_{10}$	(1)	
If name and formula given then both must be correct IGNORE Refinery gas / natural gas / fuel gas / LPG			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i i i)}$	Insufficient petrol obtained (from fractional distillation)/ Not enough petrol is obtained to meet demand / other fractions are surplus to requirements		(1)
	ALLOW There is a high demand for petrol / other fractions are less useful	IGNORE Higher yield / references to cost	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (b) (i)}$	High temperature / Heat	Warm UV light	(1)
	ALLOW Any value(s) $\geq 150^{\circ} \mathrm{C}$	Melting / boiling temp	
	IGNORE Pressure / steam / exclusion of oxygen / just 'temperature'		

$\left.\begin{array}{|l|l|r|r|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 6 (b) (i i)} & \mathrm{C}_{12} \mathrm{H}_{26} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{2} \mathrm{H}_{4} & & \text { (2) } \\ & \text { Correct formulae } \\ \text { Balancing of correct formulae } & \text { (1) } & & \\ & \text { IGNORE } \\ \text { State symbols even if incorrect / any conditions above arrow }\end{array}\right]$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (c) (i)}$	Burns more 'smoothly'/ reduces/prevents 'knocking/pinking/pre-ignition' OR Has a higher octane rating ALLOW Burns more efficiently / burns more easily	(1)	
IGNORE references to incomplete combustion /less flammable / cleaner combustion / releases more energy			

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 6 (\mathbf { c } \text { (ii) }}$			(3)	
			(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (c) (i i i) ~}$	$(+) \mathrm{H}_{2} / \mathrm{H}-\mathrm{H}$	$2 \mathrm{H} /$ $2 \mathrm{H}_{2} /$ $3 \mathrm{H}_{2}$ etc.	(1)
	IGNORE		
	State symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
16(d)(i)	MP 1 (multiplication by 10) $\begin{equation*} \mathrm{m}\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)=0.626 \times 10=6.26(\mathrm{~g}) \tag{1} \end{equation*}$ MP 2 (division by 72) $\begin{equation*} \mathrm{n}\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)=6.26 \div 72=0.08694 \ldots .(\mathrm{mol}) \tag{1} \end{equation*}$ MP 3 (multiplication by 5) $\begin{equation*} \mathrm{n}\left(\mathrm{CO}_{2}\right)=5 \times 0.08694 \ldots=0.43472 \ldots(\mathrm{~mol}) \tag{1} \end{equation*}$ MP 4 (multiplication by 24000 and to 3SF) $\mathrm{V}\left(\mathrm{CO}_{2}\right)=0.43472 \ldots \times 24000=10433.333 \mathrm{~cm}^{3}$ $\begin{equation*} =10400\left(\mathrm{~cm}^{3}\right) / 10.4 \mathrm{dm}^{3} \tag{1} \end{equation*}$ Answer must be to 3SF Correct answer without working scores (4) TE throughout		(4)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (d) (i i)}$	$\mathrm{C}_{5} \mathrm{H}_{12}+5^{1 / 2 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}+6 \mathrm{H}_{2} \mathrm{O}}$		(1)
Allow multiples			
IGNORE			
State symbols even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
*16(e)	Non-renewable means that it is a finite resource/it takes millions of years to produce/ it will 'run out' / being used up faster than it is made ALLOW Not a sustainable resource IGNORE Just 'it's not renewable' / 'can't be made again' Impact on climate change: (Increase in) global warming due to (increase in) CO_{2} emissions OR (Increased) CO_{2} causes stated effect of global warming, e.g. melting of polar ice caps/rise in sea levels/disrupted weather patterns OR (Increased) CO_{2} absorbs infrared / traps heat IGNORE Reference to acid rain / references to water Reference to methane production / greenhouse effect	Only be used once ozone layer UV light absorption CO / carbon monoxide	(2)

(Total for Question 16 = 18 marks)

Question Number	Acceptable Answers	Reject	Mark
17(a)(i)	A sigma bond has a single area of orbital overlap and a pi bond has two areas of orbital overlap A sigma bond has axial/end-on/head-on /direct/horizontal overlap and a pi bond has lateral/sideways/parallel overlap These points can be awarded for suitable labelled diagrams for example ALLOW two correct statements from the list above about either sigma or pi bonds for IGNORE Reference to the extent of overlap		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i i)}$	Lack of rotation (about the bond)/ restricted rotation (about the bond)/ barrier to rotation (about the bond)	Lack of molecular rotation	(1)
ALLOW No rotation (about the bond) IGNORE References to the groups attached to the double bond			

Question Number	Acceptable Answers		Reject	Mark
17(a)(iii)	Either	Z isomer		(4)
	H -	But-1-ene		
	OR	OR		
	$\mathrm{C}=\mathrm{C}^{\prime}$	(2-)methylpropene	(2-)methylprop-2-ene	
	$\begin{equation*} \mathrm{H}^{\prime} \mathrm{H} \tag{1} \end{equation*}$	ALLOW (2-)methylprop-1-ene		
	ALLOW Skeletal formulae Non-displayed $\mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CH}_{2} / \mathrm{C}_{2} \mathrm{H}_{5}$ Award one mark out of two if $E-Z$ isomers are drawn the wrong way round ALLOW MP4 can be awarded for the name of correct structure with minor error in MP3 e.g. missing H atom / extra H atom MP4 can be awarded for the correct name if no structure has been drawn for MP3			

Question Number	Acceptable Answers	Reject	Mark
17(b)(i)	Answers reading clockwise from top left: ALLOW Skeletal/displayed formulae $\begin{equation*} \mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br} \tag{1} \end{equation*}$ H_{2} and Ni/ Pt OR Hydrogen and Nickel/Platinum $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH} \tag{1} \end{equation*}$ IGNORE Names for organic species even if incorrect	$\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ $\begin{equation*} \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \tag{1} \end{equation*}$	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i)}$			(1)
		(1) The methyl group can be displayed, given on either carbon of the repeat unit and drawn either on the top or the bottom Two or more correct repeat units	

Question Number	Acceptable Answers	Reject	Mark
17(c)	Reaction mechanism, e.g. Reactrin Mechanism: Electrophitic addition MP1 Curly arrow from $\mathrm{C}=\mathrm{C}$ in correctly drawn propene to $\left({ }^{(s+}\right) \mathrm{H}$ MP2 $\mathrm{H}-\mathrm{Br}$ dipole and curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br or just beyond MP3 Structure of carbocation MP4 Curly arrow from lone pair on bromide ion to $C+$ and correct structure of product MP5 Reaction mechanism: Electrophilic addition MP6 Name of product: 2-bromopropane Penalise formation of minor product 1-bromopropane in MP3 only	'Spare' bond on C+	(6)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	In one mole (of atoms) / per mole (of atoms) (1)		(2)
	In the gaseous state ALLOW Reference to gaseous ions IGNORE Any equations	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b)}$	To overcome the (electrostatic) attraction/force of the nucleus/protons for the electron(s)	(1)	
IGNORE Just 'energy is needed' Just 'overcome the attraction'			

Question Number	Acceptable Answers	Reject	Mark
18(c)(i)	Sketch encircled, e.g. Circle of the last cross to the right Circles of the first two crosses on the left ALLOW One circle around both crosses on the left Three correct circles and one incorrect scores one.		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (c) (i i)}$	Single figure of eight shape in any orientation, e.g.	2 or 3 orbitals on the same diagram	(1)
	IGNORE Any axes given		

Question Number	Acceptable Answers	Reject	Mark
*18(d)	(Gradual) increase in first three ionisation (1) energies Big jump from third to fourth ionisation energy (1) (so it is in Group 3)		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (e)}$	Electrons (in the same orbital) repel each other/ repulsion is minimised		(1)
	ALLOW To avoid/prevent repulsion / so there is no repulsion (between electrons)		
	OR (Electron) pairing causes repulsion		

(Total for Question 18 = 9 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (b)}$	$\left(\mathrm{U}=-(635+178+249+590+1145-141+798=)-3454 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$ Correct answer scores (2) ALLOW one mark for $-2184 \mathrm{~kJ} \mathrm{~mol}^{-1}$ OR OR OR kJ mol $(+) 3454 \mathrm{~kJ} \mathrm{~mol}^{-1}$		(2)

Question Number	Acceptable Answers	Reject	Mark
*19(c)	(Theoretical lattice energies are calculated using an ionic model) The bonding in CaO is (almost purely/100\%) ionic The bonding in CaI_{2} is partially covalent The iodide (anion) is larger (than the oxide anion) The iodide (anion) is (more) polarised (by the calcium ion) / the electron cloud is (more easily) distorted (by the calcium ion, resulting in a more negative lattice energy) ALLOW So the bonding is stronger than expected (in CaI_{2})	Just 'covalent' Atomic radius Weaker bond	(4)

Question	Acceptable Answers	Reject	Mark
19(d)(i)	MP1 (calculation of Q) $\begin{equation*} \mathrm{Q}=(200 \times 4.18 \times 40=) 33440(\mathrm{~J}) \tag{1} \end{equation*}$ ALLOW 33.44 kJ IGNORE Any sign given MP2 (division by enthalpy change) $\begin{equation*} \mathrm{n}=(33440 \div 65100=) 0.51367 \ldots \ldots .(\mathrm{mol}) \tag{1} \end{equation*}$ MP3 (multiplication by molar mass) $\begin{equation*} m=(0.51367 \ldots \times 56.1=) 28.817 \ldots / 28.82 / 28.8 \quad(\mathrm{~g}) \tag{1} \end{equation*}$ Correct answer with or without working scores (3) IGNORE SF except 1 SF but penalise once only		3

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | ---: | ---: | :--- |
| $\mathbf{1 9 (d) (i i) ~}$ | To keep the drink at the required temperature/to
 minimise heat loss
 ALLOW
 To keep the drink hot/warm
 To allow the can to be handled safely
 ALLOW
 To prevent hands from being burnt | (1) | (2) |

Question Number	Acceptable Answers	Reject	Mark
19(d)(iii)	Enthalpy level diagram such as Enthalpy There are four requirements for the two marks: - Arrow downwards with $-65.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ ALLOW Double-ended arrow/arrow that goes down but does not go exactly from the reactant line to the product line IGNORE Activation energy hump and labels even if incorrect - Y axis label ALLOW Energy for enthalpy - Reactant and product formulae - Reactant and product state symbol 4 correct scores 2 marks 2 or 3 correct scores 1 mark 1 correct scores 0 mark	Enthalpy change / ΔH / heat Additional compounds	(2)

(Total for Question 19 = 16 marks)
(TOTAL FOR SECTION B = 60 MARKS)
TOTAL FOR PAPER = 80 MARKS

