Write your name here	Oil	
Surname	Other n	ames
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Core Math	nematic	c C3A
Advanced	Ciliatic	3 (34
Advanced Tuesday 21 June 2016 – Mo	orning	Paper Reference
Advanced	orning	

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 125.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 7 1 4 A 0 1 5 2

PEARSON

Turn over ▶

1. (a) Express $3\cos\theta + 5\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < 90^{\circ}$. Give the exact value of R and give the value of α to 2 decimal places.

(3)

Leave blank

(b) Hence solve, for $0 \le \theta < 360^{\circ}$, the equation

$$3\cos\theta + 5\sin\theta = 2$$

Give your answers to one decimal place.

(4)

(c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which

$$3\cos\theta - 5\sin\theta = 2$$

(2)

www.dynamicpapers.co	m
	Leave blank
Question 1 continued	

www.dynamicpapers.co		
Question 1 continued		Leave blank
		Q1
	(Total 9 marks)	71
	(

Leave blank

2. The point P with coordinates $\left(\frac{\pi}{2}, 1\right)$ lies on the curve with equation

$$4x\sin x = \pi y^2 + 2x, \qquad \frac{\pi}{6} \leqslant x \leqslant \frac{5\pi}{6}$$

(6)

www.dy	namicpapers.com	
		Leave
		blank
Question 2 continued		
Question a continuou		
		Q2
	(Total 6 marks)	
	·	

DO NOT WRITE IN THIS AREA

$$(1 + ax)^{-3}$$
, $|ax| < 1$

in ascending powers of x, up to and including the term in x^3 , giving each coefficient as simply as possible in terms of the constant a.

(3)

$$f(x) = \frac{2+3x}{(1+ax)^3}, \quad |ax| < 1$$

In the series expansion of f(x), the coefficient of x^2 is 3

Given that a < 0

(b) find the value of the constant a,

(4)

(c) find the coefficient of x^3 in the series expansion of f(x), giving your answer as a simplified fraction.

(2)

DO NOT WRITE IN THIS AREA

www.dynamicpapers.com	l
	Leave
	blank
Question 3 continued	Olding
Question 3 continued	
	1

	www.dynamicpapers.con
estion 3 continued	

DO NOT WRITE IN THIS AREA

4.
$$g(x) = \frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12}, \quad x > 3, \quad x \in \mathbb{R}$$

(a) Given that

$$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12} \equiv x^2 + A + \frac{B}{x - 3}$$

find the values of the constants A and B.

(4)

(b) Hence, or otherwise, find the equation of the tangent to the curve with equation y = g(x) at the point where x = 4. Give your answer in the form y = mx + c, where m and c are constants to be determined.

(5)

www.dynamicpapers.co	m
<u> </u>	Leave
	blank
Question 4 continued	

uestion 4 continued		

	Leave blank
Question 4 continued	
	Q4
(Total 9 a	

www.dynamicpapers.com

Leave blank

5. Use integration by parts to find the exact value of $\int_0^2 x 2^x dx$	
Write your answer as a single simplified fraction.	(6)

www.dynamicpapers.co	www.dynamicpapers.com		
	Leave		
	blank		
Question 5 continued			

www.dynamicpapers.	com	
Question 5 continued	L	eave lank
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	Q	5
(Total 6 mark	as)	

- **6.** Given that a and b are constants and that a > b > 0
 - (a) on separate diagrams, sketch the graph with equation
 - (i) y = |x a|
 - (ii) y = |x a| b

Show on each sketch the coordinates of each point at which the graph crosses or meets the *x*-axis and the *y*-axis.

(5)

(b) Hence or otherwise find the complete set of values of x for which

$$\left|x - a\right| - b < \frac{1}{2}x$$

giving your answer in terms of a and b.

(4)

Question 6 continued	blank

W\	www.dynamicpapers.com_	
Question 6 continued		Leave blank
		Q6
	(Total 9 marks)	

7.

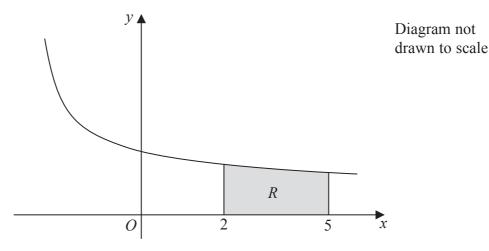


Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{1}{\sqrt{2x+5}}$, x > -2.5

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines with equations x = 2 and x = 5

(a) Use the trapezium rule with three strips of equal width to find an estimate for the area of *R*, giving your answer to 3 decimal places.

(4)

(b) Use calculus to find the exact area of R.

(4)

(c) Hence calculate the magnitude of the error of the estimate found in part (a), giving your answer to one significant figure.

(1)

www.dynamicpapers.com	
	Leave
Question 7 continued	blank
Question 7 continued	

www.dynamicpapers.com	
Question 7 continued	Leave blank
	Q7
(Total 9 i	narks)

8. (a) Prove that

$$\sin 2x - \tan x \equiv \tan x \cos 2x,$$
 $x \neq \frac{(2n+1)\pi}{2}, n \in \mathbb{Z}$

(4)

(7)

- (b) Hence solve, for $0 \leqslant \theta < \frac{\pi}{2}$
 - (i) $\sin 2\theta \tan \theta = \sqrt{3}\cos 2\theta$
 - (ii) $\tan(\theta + 1)\cos(2\theta + 2) \sin(2\theta + 2) = 2$

Give your answers in radians to 3 significant figures, as appropriate.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

www.dynamicpapers.co	www.dynamicpapers.com		
	Leave		
	blank		
Question 8 continued			

		_
		_
		_
		_
		_
		_
		-
		-
		_
		_
		_
		_
		_
		-
		-
		_
		_
		_
		_
		_
		-
		-
		_
		_
		_
		_
		-
		_
		_
		_
		-

www.dynamicpapers.o	www.dynamicpapers.com		
Question 8 continued	Leave blank		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	Q8		
(Total 11 marks	<u>)</u>		

DO NOT WRITE IN THIS AREA

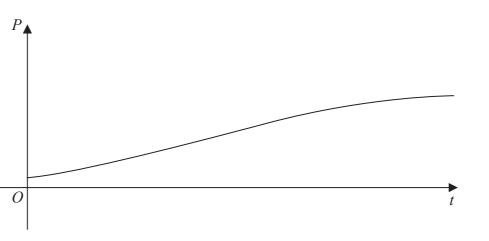


Figure 2

The population of a species of animal is being studied. The population P, at time t years from the start of the study, is assumed to be

$$P = \frac{9000e^{kt}}{3e^{kt} + 7}, \qquad t \geqslant 0$$

where k is a positive constant.

A sketch of the graph of *P* against *t* is shown in Figure 2.

Use the given equation to

(a) find the population at the start of the study,

(2)

(b) find the value for the upper limit of the population.

(1)

Given that P = 2500 when t = 4

(c) calculate the value of k, giving your answer to 3 decimal places.

(5)

Using this value for k,

(d) find, using $\frac{dP}{dt}$, the rate at which the population is increasing when t = 10

Give your answer to the nearest integer.

(3)

www.dynamicpapers.co	m
	Leave
Question 9 continued	blank
Question 5 continued	

WW	www.dynamicpapers.com		
Question 9 continued		Leave blank	
		Q9	
	(Total 11 marks)		
	()		

- **10.** (a) Given that $-\frac{\pi}{2} < g(x) < \frac{\pi}{2}$, sketch the graph of y = g(x) where $g(x) = \arctan x$, $x \in \mathbb{R}$
- **(2)**

(b) Find the exact value of x for which

$$3g(x+1) - \pi = 0$$

(3)

The equation $\arctan x - 4 + \frac{1}{2}x = 0$ has a positive root at $x = \alpha$ radians.

(c) Show that $5 < \alpha < 6$

(2)

The iteration formula

$$x_{n+1} = 8 - 2 \arctan x_n$$

can be used to find an approximation for α

- (d) Taking $x_0 = 5$, use this formula to find x_1 and x_2 , giving each answer to 3 decimal places.
 - **(2)**

www.dynamicpapers	www.dynamicpapers.com	
	Lea	
Question 10 continued	bla	ınk
Question to continued		
	_	
	_	

	Leave
	blank
Question 10 continued	
	Q10
	\(\frac{1}{2}\)
(Total 9 marks)	
(Total 9 marks)	

www.dynamicpapers.com

11. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 7\\4\\9 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\4 \end{pmatrix}$$

$$l_2: \mathbf{r} = \begin{pmatrix} -6 \\ -7 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 4 \\ b \end{pmatrix}$$

where λ and μ are scalar parameters and b is a constant.

Given that l_1 and l_2 meet at the point X,

(a) show that b = -3 and find the coordinates of X.

(5)

(3)

The point A lies on l_1 and has coordinates (6, 3, 5)

The point B lies on l_2 and has coordinates (14, 9, –9)

(b) Show that angle
$$AXB = \arccos\left(-\frac{1}{10}\right)$$
 (4)

(c) Using the result obtained in part (b), find the exact area of triangle AXB.

Write your answer in the form $p\sqrt{q}$ where p and q are integers to be determined.

40

	Leave
	blank
Question 11 continued	
	1

www.dynamicpape	www.dynamicpapers.com		
Question 11 continued		Leave blank	
		O11	
(Total 12 m	arks)	Q11	
(10tti 12 iii			

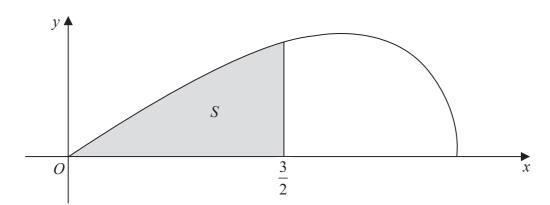


Figure 3

Figure 3 shows a sketch of the curve with parametric equations

$$x = 3\sin t$$
, $y = 2\sin 2t$, $0 \leqslant t \leqslant \frac{\pi}{2}$

The finite region *S*, shown shaded in Figure 3, is bounded by the curve, the *x*-axis and the line with equation $x = \frac{3}{2}$

The shaded region S is rotated through 2π radians about the x-axis to form a solid of revolution.

(a) Show that the volume of the solid of revolution is given by

$$k \int_0^a \sin^2 t \cos^3 t \, dt$$

where k and a are constants to be given in terms of π .

(5)

(b) Use the substitution $u = \sin t$, or otherwise, to find the exact value of this volume, giving your answer in the form $\frac{p\pi}{q}$ where p and q are integers.

(Solutions based entirely on graphical or numerical methods are not acceptable.) (6)

www.dynamicpapers.co	m
	Leave
	blank
Question 12 continued	
	1

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

www.dynamicpapers.co	m
<u> </u>	Leave
	blank
Question 12 continued	
	Q12
(Total 11 marks)	

DO NOT WRITE IN THIS AREA

(6)

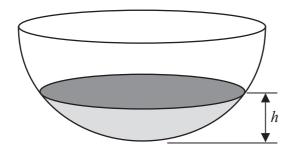


Figure 4

Figure 4 shows a hemispherical bowl containing some water.

At t seconds, the height of the water is h cm and the volume of the water is V cm³, where

$$V = \frac{1}{3}\pi h^2 (30 - h), \qquad 0 < h \le 10$$

The water is leaking from a hole in the bottom of the bowl.

Given that $\frac{dV}{dt} = -\frac{1}{10}V$

(a) show that
$$\frac{dh}{dt} = -\frac{h(30-h)}{30(20-h)}$$
 (5)

(b) Write
$$\frac{30(20-h)}{h(30-h)}$$
 in partial fraction form. (3)

Given that h = 10 when t = 0,

(c) use your answers to parts (a) and (b) to find the time taken for the height of the water to fall to 5 cm. Give your answer in seconds to 2 decimal places.

	Leave
	blank
Question 13 continued	
American to community	

estion 13 continued	

www.dynamicpapers.com	
	Leave
Question 13 continued	blank

