

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International Advanced Level in Chemistry (WCH06) Paper 01 Chemistry Laboratory Skills

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 46666_MS* All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to

complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary

when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question

• examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer. Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is

essential to the

answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark

scheme, but this does not preclude others.

Question Number	Correct Answer	Reject	Mark
1(a)(i)	$[Zn(OH)4]^{2-} OR$ $[Zn(H2O)2(OH)4]^{2-}$ OR $[Zn(OH)4(H2O)2]^{2-}$ ALLOW -2 for 2- as charge $[ZnO2]^{2-}$	Zn(OH) 6^{4-} [Zn(H2O)4(OH)2] ²⁻ Zn(OH)2 [Zn(H2O)2(OH ⁻)4] ²⁻ / any charges on ligands	(1)
	IGNORE State symbols, even if incorrect Omission of square brackets		

Question Number	Correct Answer	Reject	Mark
1(a)(ii)	[Zn(NH3)4]2+ OR [Zn(H2O)2(NH3)4]2+ OR [Zn(NH3)4 (H2O)2]2+ IGNORE State symbols, even if incorrect Omission of square brackets	[Zn(NH3)6]2+	(1)

Question Number	Correct Answer	Reject	Mark
1(b)(i)	$\begin{array}{l} Cr3+(aq) + 3OH-(aq) \rightarrow Cr(OH)3(s) \\ \textbf{OR} \\ [Cr(H2O)6]3+(aq) + 3OH-(aq) \rightarrow \\ [Cr(OH)3(H2O)3](s) + 3H2O(l) \\ \hline \textbf{IGNORE} \\ \\ Omission of square brackets \\ \hline \textbf{IGNORE} \\ Cr3+(aq) + 3NaOH(aq) \rightarrow \\ Cr(OH)3(s) + 3Na+(aq) \end{array}$	One or more incorrect state symbols, e.g. H2O(aq)	(1)

Question Number	Correct Answer	Reject	Mark
1(b)(ii)	(Before addition of H2O2) +3 ALLOW "3+" / "Cr ³⁺ " (1)		(2)
	(After addition of H2O2) +6 ALLOW "6+" / "Cr ⁶⁺ "		
	(1)		
	Penalise omission of the `+' sign once only		
	NOTE: If Cr(III) and Cr(VI) given, award (1)		

Question Number	Correct Answer	Reject	Mark
1(c)	Mn2+ / [Mn(H2O)6] ²⁺ IGNORE Names State symbols, even if incorrect	Mn(OH)2	(1)

(Total for Question 1 = 6 marks)

2(a) (i) EXPECTED ANSWER 1st mark: Calculates moles of NaOH to neutralise 5 cm ³ of equilibrium mixture $= 0.500 \times 42.4 = 0.0212 \text{ (mol)}$ 1000 (1) 2nd mark: Calculates moles of NaOH to neutralize 25 cm ³ of equilibrium mixture $= 5 \times 0.0212 = 0.106 \text{ (mol)}$ (1) 3rd mark: Calculates moles of CH3COOH in 25 cm ³ of equilibrium mixture = 0.106 - 0.0100 (= 0.0960) (1)	Question Number	Correct Answer	Reject	Mark
Mark TE for 2nd and 3rd mark on moles of NaOH calculated ESSENTI ALLY First mark: Calculates moles of NaOH Second mark: Scaling x 5 Third mark: Subtraction of moles of HCl		1st mark: Calculates moles of NaOH to neutralise 5 cm3 of equilibrium mixture = 0.500×42.4 = 0.0212 (mol) 1000 (1)2nd mark: Calculates moles of NaOH to neutralize 25 cm3 of equilibrium mixture = $5 \times 0.0212 = 0.106$ (mol) (1)3rd mark: Calculates moles of CH3COOH in 25 cm^3 of equilibrium mixture = $0.106 - 0.0100$ (= 0.0960) (1)Mark TE for 2nd and 3rd mark on moles of NaOH calculatedESSENTIALLY First mark: Calculates moles of NaOH Second mark: Scaling x 5 Third mark: Subtraction of moles		(3)

ALTERNATIVE ROUTE ALSO SEEN: 1st mark: Calculates moles of NaOH to neutralise all the acid in 5.00 cm ³ of the equilibrium mixture = 0.500×42.4 = 0.0212 (mol) 1000 (1)	
2nd mark:	
Calculates moles of HCl in 5.00 cm ³ (= $0.01 \div 5$) = $0.002(00)$ and finds moles CH3COOH in 5.00 cm ³ = $(0.0212 - 0.002(00) =)$ = 0.0192 (mol) CH3COOH in 5.00 cm ³ (1)	
3rd mark : Calculates moles of CH3COOH in 25.0 cm ³ of equilibrium mixture by 5 x 0.0192 (= 0.0960) (1)	
Mark TE for 2nd and 3rd mark on moles of NaOH calculated	
NOTE Alternative approaches are possible	
ESSENTI ALLY THIS ROUTE: First mark: Calculates moles of NaOH	
Second mark: Scaling and subtraction of moles of HCI to find moles CH3COOH	
Third mark: Scaling x 5	

Question Number	Correct Answer	Reject	Mark
2(a)(ii)	(Amount of C2H5OH) = 0.096(0) (1)		(3)
	$(amount of CH_3COOC_2H_5)$ = 0.153 - 0.096(0)) = 0.057(0)		
	TE on moles of C2H5OH calculated (1)		
	(amount of H2O = $0.556 - 0.096(0)$) = $0.46(0)$		
	TE on moles of C2H5OH calculated (1)		
	Max (2) if answers rounded to 1 S.F.		

Question Number	Correct Answer	Reject	Mark
2(a)(iii)	$(K_{C} =) [C_{2}H_{5}OH(I)][CH_{3}COOH(I)]$ [CH_{3}COOC_{2}H_{5}(I)][H_{2}O(I)]	Round brackets / missing square brackets	(1)
	IGNORE Missing or incorrect state symbols		

Question Number	Correct Answer		Reject	Mark
2(a)(iv)	Kc = 0.35149	(1)		(2)
	= 0.351	(1)	0.35 2 for 2nd mark	
	Answer MUST be given to 3 sf to score M2			
	Max 1 if ANY units are given			
	TE on moles calculated in (a)(ii)			
	Only TE on an incorrect K _c expression is for omission of H2O(scores max (1)	(I) –		

Question Number	Correct Answer	Reject	Mark
2(a)(v)	The volumes (all) cancel OR The number of moles is the same on both sides of the equation OR Same mole ratio OR 1:1 (mole) ratio of components/compounds ALLOW Just 'Same number of moles' IGNORE 'V is constant' or 'Volumes are all the same' or Just 'units cancel' or 'Kc has no units' or "The volume is the same so they cancel out" or "Moles are (directly) proportional to the concentration"	'Concentrations cancel' scores (0)	(1)

Question Number	Correct Answer	Reject	Mark
2(b)(i)	(Effect on K _c) – M1 Greater / larger / more / increases / bigger ALLOW Teacher's (Kc) value is smaller / less (1) (Explanation) – M2 (Calculated) moles of (ethanoic) acid would appear to be greater / more (ethanoic) acid For M2 to be awarded, there MUST be mention of more acid/ more CH ₃ COOH (1) NOTE Mark scoring points M1 and M2 independently		(2)

Question Number	Correct Answer	Reject	Mark
2(b)(ii)	(Effect on K_c) – M1 Greater / larger / more / increases / bigger ALLOW Teacher's (K _c) value is smaller / less		(2)
	(1) (Explanation) – M2 (Forward) reaction is endothermic OR Backward / reverse reaction is exothermic (1)		
	NOTE Mark M1 and M2 independently IGNORE Just " ΔH is positive" OR " K_c (only) dependent on temperature"		
	IGNORE References to equilibrium position shifting to the right (with increasing temperature)		

Question Number	Correct Answer	Reject	Mark
2(c)(i)	 (Volume is) less / lower AND pipette is calibrated to be measured from the bottom of the meniscus ALLOW for 2nd part of answer (volume) should be read from bottom / base of the meniscus OR A diagram showing the bottom of meniscus on the mark 		(1)

Question Number	Correct Answer	Reject	Mark
2(c)(ii)	 (Volume is) same / not changed AND (volume from burette) is (difference between) two readings / is measured by difference ALLOW Any idea that the error cancels out 		(1)

Question Number	Correct Answer	Reject	Mark
2(c) (iii)	$\frac{2 \times 0.05}{42.60} \times 100\% = (\pm) 0.23474 (\%)$ 42.60 IGNORE S.F. but answer must be rounded correctly NOTE 0.2/ 0.23 / 0.235 / 0.2347 / 0.23474 all score the available mark IGNORE Any signs or the omission of ± in front of the final answer	(±)0.2 4 /(±)0.23 4 scores (0)	1

(Total for Question 2 = 17 marks)

Question Number	Correct Answer		Reject	Mark
3(a)	First, look at answer line. If answer = 50%, award (2) marks. 1st mark: Moles of ester (= $\frac{6.0 \times 1.05}{150}$ = $\frac{6.3}{150}$			(2)
	= 0.042 (mol)	(1)		
	2nd mark: % yield = <u>0.021</u> x 100% 0.042			
	= 50 (%)		Yield > 100%	
	ALLOW TE on moles of ester calculated ALTERNATIVE ROUTES:	(1)		
	1st mark: Mass of ester $(= 0.021 \times 150)$ = 3.15 (g) and Theoretical mass of ester $(= 6.0 \times 1.05)$ = 6.30 (g)			
	2nd mark: % yield = <u>3.15</u> x 100% 6.30			
	= 50 (%)	(1)		

1st mark: Mass of benzoic acid $(= 0.021 \times 122)$ = 2.56 (g) and Theoretical mass of benzoic acid $(= 0.042 \times 122)$ = 5.12 (g)	
2nd mark: % yield = <u>2.56</u> x 100% 5.12	
= 50 (%) Check all working if answer given differs from 50%	

Question Number	Correct Answer	Reject	Mark
3(b)	EITHER – via 'moles' NaOH		(2)
	Moles NaOH = $\frac{1}{40}$ = 0.025 (mol) (1)		
	which is less than the moles of ester / which is less than 0.042 (mol) / 0.025 < 0.042 (1)		
	For M2, allow TE on moles of ester from 3(a), provided moles of ester is >0.025		
	OR – via 'mass' NaOH		
	(Minimum) mass of NaOH required (= 0.042×40) = 1.68 (g) (1)		
	which is more than the 1 g of NaOH used (1)		
	For M2, allow TE on moles of ester from 3(a), provided moles of ester is >0.025		
	NOTE M2 can only be awarded for linking their answer to the mass / moles required		

Question Number	Correct Answer	Reject	Mark
3(c)	(Not necessary as) NaOH in excess OR A bigger excess of NaOH will have no effect		(1)
	NOTE: Answer needs to make reference/explain that the NaOH will (still) be in excess		

Question Number	Correct Answer	Reject	Mark
3(d)	Recrystallisation ALLOW Mis-spellings, as long as meaning remains clear NOTE The mark available is for the identification of the technique described	Crystallisation	(1)

Question Number	Correct Answer	Reject	Mark
3(e)	C_6H_5COONa OR $C_6H_5COO-Na+$ OR $C_6H_5CO2-Na+$ OR C_6H_5CO2Na ALLOW Displayed formula / skeletal formula IGNORE Any names	C7H5O2Na C6H5COO−Na	(1)

Question Number	Correct Answer	Reject	Mark
3(f)	Product was still dissolved OR Product had not all crystallised / "product had not all precipitated" ALLOW Any idea of insufficient time for the crystals to form / product remaining in solution / product left in filtrate / `crystals' remain in solution		(1)

Question Number	Correct Answer	Reject	Mark
3(g)(i)	Sample 2 is purer / pure OR Sample 1 is less pure / impure OR Samples differ in purity ALLOW Recrystallisation has removed (some of the) impurities		(1)

Question Number	Correct Answer	Reject	Mark
3(g)(ii)	1st Mark: The 2-nitro isomer / (compound) P (1)	(0) overall if more than one isomer suggested	(2)
	M1 is a stand-alone mark, subject to only one isomer being suggested		
	2nd Mark: Impurities lower the melting temperature OR Cannot be Q as melting temperature range (of Sample 2) is greater than melting temperature of Q OR Cannot be R as melting temperature (range) of R is too high / too far away (from 144°C to 146°C) (1) IGNORE References to Sample 1's melting range being closest to that of Q	References to boiling temperatures – no M2	

Question Number	Correct Answer		Reject	Mark
3(h)(i)	In P and Q there are 5 proton environments / 5 peaks	(1)	If states that all three isomers have 5 peaks,	(2)
	In R there are only 3 proton environments / 3 peaks	(1)	(O) overall	
	(therefore you can only identify can't distinguish)	R /		
	ALLOW Hydrogen in lieu of proton			
	IGNORE Any chemical shift values quoted	1		

Question Number	Correct Answer	Reject	Mark
3(h)(ii)	(m/e value =) 167		(1)
	IGNORE Any other fragments		

(Total for Question 3 = 14 marks)

Question Number	Correct Answer	Reject	Mark
4(a)(i)	$2NH4VO3 \rightarrow V2O5 + 2NH3 + H2O$		(1)
	ALLOW Multiples ⇒ sign instead of →		
	IGNORE State symbols, even if incorrect		

Question Number	Correct Answer	Reject	Mark
4(a)(ii)	Heat to constant mass OR Test with indicator paper to show that an alkaline gas / ammonia is no longer being given off OR Test with hydrogen chloride / HCl until no more white smoke (observed) IGNORE Just 'no more ammonia is given off', unless a test is suggested / 'no more steam is given off' / references to smell / references to colour change(s) in the reactant or products / references to (stopping of) "fizzing" or "effervescence" or "bubbles"		(1)

Question Number	Correct Answer	Reject	Mark
4(b)	(In air) hydrogen is explosive / hydrogen would catch fire / hydrogen is flammable / hydrogen is inflammable NOTE Need to identify hydrogen by name or by formula (H ₂) IGNORE V ₂ O ₃ toxic		(1)

Question Number	Correct Answer	Reject	Mark
_	1st mark – for moles of V ³⁺ Moles V ³⁺ (= 1.498) × 2 = 0.02(00) 149.8 (1) 2nd mark – for division by 0.25(0) Concentration of V ³⁺ (aq) (= $0.02(00)$) = 0.08(00) (mol dm ⁻³) 0.25(0) (1) ALLOW TE for M2 from calculated moles of V ³⁺ [e.g. answer of 0.04(00) (mol dm ⁻³) scores (1) mark] IGNORE Incorrect units at any stage Correct answer with no working scores (2)		(2)

Question Number	Correct Answer	Reject	Mark
4(c)(ii)	 H⁺(aq) or H₃O⁺(aq) AND SO₄²⁻(aq) or HSO₄⁻(aq) NOTE: Two correct ions are needed for the one mark IGNORE Any missing or incorrect state symbols 	SO ₃ ^{2–} (aq)	(1)

Question Number	Correct Answer	Reject	Mark
4(d)(i)	Marks can be scored in either order: 1st Mark: States that for VO_2^+ to VO^{2+} OR gives an equation (even if unbalanced) OR Makes reference to the 1st step and $(E^{\circ}_{cell} =) + 0.83$ (V) (1	1)	(2)
	2nd Mark: States that for VO^{2+} to V^{3+} OR gives an equation (even if unbalanced) OR Makes reference to the 2nd step and $(E^{o}_{cell} =) +0.17 (V)$	[1]	
	Penalise missing + sign once only NOTE: If only the e.m.f. values of +0.83 (V) and +0.17 (V) are given without any reference to the reactions under consideration, then award (1)		

Question Number	Correct Answer	Reject	Mark
4(d)(ii)	Activation energy is (too) high OR Rate of reaction is (very) slow ALLOW Concentrations (of solutions) not 1 mol dm-3 / Any references to departure from standard conditions		(1)

Question Number	Correct Answer	Reject	Mark
4(d)(iii)	SO ₂ + 2VO ₂ ⁺ → SO ₄ ²⁻ + 2VO ²⁺ ALLOW Multiples \Rightarrow sign instead of → IGNORE State symbols, even if incorrect or missing	ANY uncancelled H^+ , H_2O and e^-	(1)

Question Number	Correct Answer	Reject	Mark
4(e)	These answers may be given in any order:		(3)
	First mark (M1): Platinum wire (connecting the two solutions) – replace with salt bridge		
	ALLOW Any correct description of a salt bridge (e.g. filter paper soaked in KNO3 solution) if the term 'salt bridge' has not been used in answer (1)	Use of KOH / Na2CO3 / any insoluble salt for the salt bridge / just "use a piece of filter paper"	
	Second mark (M2): Vanadium electrode (in left-hand beaker) – replace with platinum/Pt (electrode)		
	NOTE This is the only acceptable electrode (1)		
	Third mark (M3): Al2(SO4)3(aq) solution concentration is 1 mol dm-3 OR		
	concentration of Al2(SO4)3(aq) is incorrect - replace with a solution of concentration 0.5 mol dm-3 / solution must be 1 mol dm-3		
	(concentration) Al3+(aq) / use (1 mol dm-3) Al(NO3)3 (1)		

(Total for Question 4 = 13 marks)

TOTAL FOR PAPER = 50 MARKS

www.dynamicpapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL $\,$