

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Chemistry (6CH04) Paper 01 General Principles of Chemistry I

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 46660_MS* All the material in this publication is copyright © Pearson Education Ltd 2016

ALWAYS LEARNING

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	D		(1)

Question Number	Correct Answer	Reject	Mark
2	D		(1)

Question Number	Correct Answer	Reject	Mark
3	D		(1)

Question Number	Correct Answer	Reject	Mark
4(a)	C		(1)

Question Number	Correct Answer	Reject	Mark
4(b)	Α		(1)

Question Number	Correct Answer	Reject	Mark
5(a)	D		(1)

Question Number	Correct Answer	Reject	Mark
5(b)	С		(1)

Question Number	Correct Answer	Reject	Mark
5(c)	D		(1)

Question Number	Correct Answer	Reject	Mark
5(d)	С		(1)

Question Number	Correct Answer	Reject	Mark
5(e)	В		(1)

Question Number	Correct Answer	Reject	Mark
6(a)	В		(1)

Question Number	Correct Answer	Reject	Mark
6(b)	A		(1)

Question Number	Correct Answer	Reject	Mark
7(a)	A		(1)

Question Number	Correct Answer	Reject	Mark
7(b)	В		(1)

Question Number	Correct Answer	Reject	Mark
8	В		(1)

Question Number	Correct Answer	Reject	Mark
9(a)	Α		(1)

Question Number	Correct Answer	Reject	Mark
9(b)	В		(1)

Question Number	Correct Answer	Reject	Mark
10(a)	В		(1)

Question Number	Correct Answer	Reject	Mark
10(b)	С		(1)

Question Number	Correct Answer	Reject	Mark
11	A		(1)

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
12(a)	$(K_{a1} =) [H_3O^+(aq)][HS^-(aq)]$ [H ₂ S(aq)]	$[H_3O^+]^2$ numerator	(2)
	(1)		
	$(K_{a2} =) [H_{3}O^{+}(aq)][S^{2-}(aq)]$ [HS ⁻ (aq)]	[H ₃ O ⁺] ² numerator	
	Allow H ⁺ (aq) for H ₃ O ⁺ (aq) Ignore missing / incorrect state symbols (1)		

Question Number	Acceptable Answers		Reject	Mark
12(b)(i)	$(H_{2}S + H_{2}O \rightleftharpoons H_{3}O^{+} + HS^{-}$ Initially 0.100 0 0 At eqm 0.100 x x $K_{a1} = \frac{x^{2}}{0.100}$ M1: x ² = 8.91 x 10 ⁻⁹ (mol ² dm ⁻⁶) M2:	(1)		(2)
	$(x = 9.4393 \times 10^{-5})$ [HS ⁻] = 9.44 x 10 ⁻⁵ / 0.0000944 (mol dm ⁻³) For M2, answer must be to 3 sf Correct answer without working scores (2)	(1)		

Question Number	Acceptable Answers	Reject	Mark
12(b)(ii)	$([H^+] = (\sqrt{8.91 \times 10^{-9}})$ =) 9.439 x 10 ⁻⁵ (mol dm ⁻³)) pH = (-log 9.439 x 10 ⁻⁵) = 4.0251/4.025 /4.03/4.0 TE on answer to (b)(i) provided pH <7	4/4.02	(1)

Question Number	Acceptable Answers	Reject	Mark
*12(b)(iii)	Any THREE from:		(3)
	Assumption 1 $[H_2S]_{equilibrium} = [H_2S]_{initial}$ OR The dissociation of H_2S is negligible OR 0.0000944 is very small compared to the initial concentration of $H_2S/$ 0.100 (hence a valid assumption)		
	Assumption 2 $[H_3O^+] = [HS^-] / [H^+] = [HS^-]$ OR Ignore any H ⁺ from (the dissociation of) water / H ⁺ only from H ₂ S		
	Assumption 3 Ignored ionization of HS ⁻ / HS ⁻ doesn't (significantly) dissociate further OR K_{a2} very much smaller than K_{a1}		
	Assumption 4 Measurements at 298 K / standard temperature IGNORE References to the concentration of water References just to "standard conditions"		

Question Number	Acceptable Answers	Reject	Mark
12(c)(i)	M1: General shape of an acid-base curve with the pH increasing and either one or two steep / vertical sections shown NOTE Penalise a pH range for a single vertical with a range of eight or more pH units (as this is the typical range for a strong monobasic acid with a strong base titration curve) (1) M2: Vertical / steep section at 25 cm ³ (1) M3: Vertical / steep section at 50 cm ³ (1) M4: Either equivalence point labelled anywhere on vertical section or x-axis (1) M5: Initial pH = 1.5 and a recognisable 'plateau' in the pH range of 12 to 13 (1) pH PH Volume - C solum hydrocic added/cm ³		(5)

Question Number	Acceptable Answers	Reject	Mark
12(c)(ii)	The pH when 12.5 cm ³ of NaOH has been added OR the pH at "half-equivalence" (for the first equivalence point) ALLOW " pH at half neutralisation"		(1)
	Allow TE from an incorrect graph TOTAL FOR QUESTION 12 = 14	1 MARKS	

Question Number	Acceptable Answers	Reject	Mark
13(a)(i)	Ammonia / barium chloride is toxic OR	References to just 'barium'	(1)
	Ammonia / barium chloride is poisonous		
	OR		
	Barium hydroxide is corrosive / caustic		
	OR		
	Ammonia (solution) is corrosive		
	OR		
	Ammonium chloride is harmful / eye -irritant ALLOW	Ammonium chloride ``is	
	Barium hydroxide is toxic / poisonous	toxic"	
	IGNORE		
	Use of fume cupboard / gloves, etc		

Question Number	Acceptable Answers		Reject	Mark
13(a)(ii)	$\sum S^{\theta}_{(products)} = ((2 \times 192) + (10 \times 70) + 124 =)$			(3)
	(+)1208 (J mol ⁻¹ K ⁻¹)	(1)		
	$\Sigma S^{\theta}_{(reactants)} = ((2 \times 95) + 427 =)$			
	(+)617 (J mol ⁻¹ K ⁻¹)	(1)		
	$\Delta S^{\circ}_{system} = (1208 - 617 =) +591 \text{ J mol}^{-1} \text{ K}^{-1}$ Allow units in any order Correct answer without working scores 3	(1)		

Question Number	Acceptable Answers	Reject	Mark
*13(a)(iii)	(Positive value as expected because) 3 moles \rightarrow 13 moles / more moles of products (than reactants) Allow 'molecules' for moles If numbers (of compounds) are stated, then these must be 3 and 13 COMMENT: Ignore any type of particle(s) mentioned (1 (Two) solids \rightarrow a gas / a liquid (+ 1 solid) OR "No gaseous reactants, but gaseous products (formed)" (1		(2)

Question Number	Acceptable Answers	Reject	Mark
13(b)	$\Delta S^{e}_{surroundings} = (-\Delta H \div T) = -\frac{162\ 000\ J\ mol^{-1}}{298\ K}$ (1) = -543.6241611/-544 J mol^{-1} K^{-1} Allow -0.544 kJ mol^{-1} K^{-1} (1) Correct answer without working scores 2 IGNORE sf except 1 sf	-543 543	(2)

Question Number	Acceptable Answers	Reject	Mark
13(c)	$\Delta S^{\theta}_{\text{total}} = \Delta S^{\theta}_{\text{system}} + \Delta S^{\theta}_{\text{surroundings}}$ $\Delta S^{\theta}_{\text{total}} = \text{ans (a)(ii) + ans (b)}$ $= +591 - 544 = +47 \text{ J mol}^{-1} \text{ K}^{-1}$ TE on answers from (a)(ii) and (b)		(1)

Question Number	Acceptable Answers	Reject	Mark
13(d)	M1: ΔS ⁹ surroundings becomes less negative / more positive smaller in MAGNITUDE (because you are dividing $-\Delta H$ by a larger T) 		(3)

Question Number	Acceptable Answers	Reject	Mark
13(e)(i)	$(K = e^{(-44/8.31)}) = 0.005017/5.017 \times 10^{-3}$		(1)
	Ignore any units		
	Allow any sf except 1 sf		

Question Number	Acceptable Answers	Reject	Mark
13(e)(ii)	Barium hydroxide will not be (very) soluble / will be sparingly soluble and		(1)
	K value suggests that the equilibrium lies to the left-hand side / reactants OR $(1 \times 10^{-10} <)$ K <1 so reactants predominant No TE on incorrect large value in (e)(i)	Just ` <i>K</i> is small'	

Question Number	Acceptable Answers	Reject	Mark
13(e)(iii)	M1: Hydroxides get more soluble as you descend Group 2 (1)		(2)
	M2: ΔS°_{total} gets less negative / more positive as you go from Ca(OH) ₂ to Ba(OH) ₂		
	IGNORE Just "smaller" / just "decreases" / just "bigger" / just "greater"		
	(1) ALLOW Reverse argument		
	No TE on calculated value "more negative" for $Ba(OH)_2$		
	Mark M1 and M2 independently		
	TOTAL FOR QUESTION 13	= 16 MAF	RKS

Question Number	Acceptable Answers	Reject	Mark
14(a)	So that the phenol is used up / methyl orange is bleached before the rate changes (significantly) OR So that the phenol is used up / methyl orange is bleached during the initial rate period OR So that the concentration of bromide/bromate/reactants does not fall significantly before all the phenol is used up / the methyl orange is bleached OR Within this region/period/time the average rate of reaction approximates to the initial rate	bromine	(1)

Question Number	Acceptable Answers	Reject	Mark
14(b)(i)	So that only the concentration of bromide ions varies (significantly) during the course of the reaction / so that the concentration of the bromide ions is the limiting factor / so that the concentration of bromide ions is the only variable ALLOW So their concentrations / the BrO ₃ ⁻ and H ⁺ concentrations do not change OR So their concentrations / the BrO ₃ ⁻ and H ⁺ concentrations are not the limiting factor		(1)

Question Number	Acceptable Answers		Reject I	Mark
14(b)(ii)	M1: Completed table 2.75	(1)		(4)
	M2: Axes correct with sensible graph paper on both axes			
	M3: Axes labels fully correct, v	(1) vith units		
	M4: All points plotted correctly and straight line drawn th	(1) (allow ± 1 small square) (rough (0,0) and through all		
	appropriate points	(1)		
	Exemplar:			
	Time / s 180 226 3	5.0 5.0 4.0 2.0 00 364 444 900 .33 2.75 2.25 1.11		
	6- 5- tome / 103-3 4 2- 1- 2- 1- 2- 1- 2- 2- 1- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2-			

Question Number	Acceptable Answers	Reject	Mark
14(b)(iii)	M1:		(2)
	First order		
	This mark is independent of the graph drawn		
	(1)		
	M2:		
	Because the graph is a straight line		
	(through the origin)		
	OR		
	rate is proportional to [Br ⁻] / rate is proportional to		
	volume of Br ⁻		
	OR		
	As concentration / volume increases by (factor of) 2,		
	rate increases by 2 (or any other numbers, including 'x')		
	OR		
	Rate increases linearly (with concentration)		
	ALLOW		
	Gradient of line is constant		
	(1)		
	M2 can only be awarded if M1 correct		

Question Number	Acceptable Answers		Reject	Mark
14(b)(iv)	Rate = $k [Br^{-}][BrO_{3}^{-}][H^{+}]^{2}$ ALLOW 'r =' instead of "rate =" Allow TE on their order wrt Br ⁻ from (b)(iii) dm ⁹ mol ⁻³ s ⁻¹ Allow the units in any order Allow TE for M2 on candidate's stated rate equation e.g. if rate = $k [BrO_{3}^{-}][H^{+}]$ then TE on units for dm ⁶ mol ⁻² s ⁻¹	(1) (1)		(2)

Question Number	Acceptable Answers	Reject	Mark
14(c)(i)	They are spectator ions OR They are unchanged (on both sides of the equation) OR They do not take part in the reaction / they do not play any part in the reaction ALLOW "They cancel out"		(1)

Question Number	Acceptable Answers	Reject	Mark
14(c)(ii)	Blue-black colour appears / turns blue-black ALLOW blue or black / shades of blue or black	Black from blue Purple	(1)
	IGNORE Any INITIAL colour Any reference to precipitate / solid	Bluer Blacker	

Question Number	Acceptable Answers	Reject	Mark
14 (d)(i)	Measure the time taken (for the blue-black colour to appear) and temperature		(1)

	Reject	Mark
M1 Temperature converted to kelvin OR K^{-1} given as units on the <i>x</i> -axis of the graph (1))	(6)
M2 The vertical axis should be In rate / In 1/t Note	1/ T	
)	
M3 The horizontal axis should be 1/T (1)	1/t	
M4 Straight line (with a negative gradient)		
Can be shown by candidate in a sketch graph of a straight line with a negative gradient)	
M5 Any mention of gradient (of the line) (1))	
M6 Rearranges expression so: $E_a = -gradient \times R$		
OR		
'Multiply gradient by -R'		
Negative sign MUST be shown or mentioned specifically (1)		
NOTE: Plot "In rate against 1/T" scores both M2 and M3 If axes clearly the wrong way round max (4) – namely only marks M1, M4, M5 and M6 are possible		
	units on the x-axis of the graph (1) M2 The vertical axis should be ln rate / ln 1/t Note ALLOW ln k for this mark (1) M3 (1) The horizontal axis should be 1/T (1) M4 Straight line (with a negative gradient) (1) OR (2an be shown by candidate in a sketch graph of a straight line with a negative gradient (1) M5 (1) (1) M6 Rearranges expression so: (1) Ea = -gradient x R (2) (1) OR 'Multiply gradient by -R' (1) NOTE: Plot "In rate against 1/T" scores both M2 and M3 (1) NOTE: Plot "In rate against 1/T" scores both M2 and M3 If axes clearly the wrong way round max (4) - namely only marks M1, M4, M5 and M6 are possible	units on the x-axis of the graph(1)M2 The vertical axis should be In rate / In 1/t1/TNote1/tALLOW In k for this mark(1)M31/tThe horizontal axis should be 1/T(1)M4Straight line (with a negative gradient) OR Can be shown by candidate in a sketch graph of a straight line with a negative gradientM5(1)M6(1)Rearranges expression so: $E_a = -\text{gradient } x R$ (1)OR(1)Note: Plot "In rate against 1/T" scores both M2 and M3 If axes clearly the wrong way round max (4) - namely

(TOTAL FOR QUESTION 14 =19 MARKS)

TOTAL FOR SECTION B = 49 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
15(a)(i)	$ \xrightarrow{OH} \xrightarrow{O^{+} Na^{+}} + CH_{3}OH $ ALLOW $ COO^{-}Na^{+} \text{ for carboxylate group} $ Skeletal drawing —OH for methanol Ignore omission of charges	O—Na ⁽⁺⁾	(1)

Question Number	Acceptable Answers	Reject	Mark
15(a)(ii)	No more precipitate formed / No more solid formed / solution turns universal indicator paper red / litmus red / pH meter reading below 7 IGNORE Tests involving gas formation with metals or carbonates "No further reaction" Just 'use indicator/pH meter'	Precipitate " disappears " effervescence fizzing bubbles	(1)

Question Number	Acceptable Answers		Reject	Mark
15(b)	(Sparingly soluble because of) the London forces between the rings / between the molecules ALLOW van der Waals' forces / induced dipole / instantaneous dipole-induced dipole / temporary dipoles for London forces Ignore references to permanent dipoles	(1)		(2)
	Hydrogen bonds between salicylic acid and water (whic increases solubility) IGNORE Any mention of "hydrophobic"	ch (1)		

Question Number	Acceptable Answers	Reject	Mark
15(c)	Any three from		(3)
	(Acid hydrolysis)		
	The acid is a catalyst (not a reagent)		
	OR		
	The reaction is reversible / is an equilibrium reaction / does not go to completion / produces lower yield		
	IGNORE References to number of steps (needed to produce product)		
	OR		
	Produces the (carboxylic) acid (not its salt)		
	OR		
	The H ⁺ is an electrophile (and the OH ⁻ nucleophile)		
	ALLOW reverse arguments		

(1) $B \text{ LiAlH}_4$ (1) $ALLOW \text{ names for A and/or B}$ C (1)	Question Number	Acceptable Answers		Reject	Mark
(1) ALLOW names for A and/or B C OH O OH O OH O OH O OH O	15(d)(i)		(1)	HCI	(3)
			(1)	NaBH ₄	
		ALLOW names for A and/or B			
Allow COOC ₂ H ₅ / COOCH ₂ CH ₃ for ester group (1)		OH OH OH OH OH OH OH OH			

Question Number	Acceptable Answers	Reject	Mark
15(d)(ii)	Any two from four differences:		(2)
	Compound D produces hydrogen chloride and not water	HCI (aq)	
	OR		
	Compound D reacts irreversibly not reversibly / goes to completion / produces higher yield		
	OR		
	Compound D reacts faster / more vigorously / reacts with alcohols without the need for a catalyst or H ⁺ ALLOW Compound D reacts more exothermically		
	OR		
	Compound D produces only one liquid / produces only one solid product (and so no further separation is needed) IGNORE References to heating reagents		

Question Number	Acceptable Answers	Reject	Mark
*15(e)	M1 Three (proton / hydrogen) environments NOTE: This must be stated. (1)		(5)
	M2 One singlet and one triplet and one quartet OR these shown on diagram (1)		
	M3 Splitting is due to (n+1) rule / number of adjacent hydrogen atoms NOTE: This must be clearly stated at least once in candidate's answer and not contradicted by a wrong splitting pattern (1)	`adjacent carbons '	
	M4 (Area ratios of peaks) 3:2:1 stated/or relative order and consistent with CH ₃ :CH ₂ :OH Can be shown on annotated (displayed) formula of ethanol ALLOW reference to height ratios (1)		
	M5 (Chemical shift values, δ , in ppm) Singlet = 2.0 - 4.0, Triplet = 0.1 - 1.9, Quartet = 3.0 - 4.2 OR shown on diagram Allow any single value, or range of values, within these ranges (1)		

Question Number	Acceptable Answers	Reject	Mark
15(f)	Because it has 12 protons/ hydrogen atoms in the same environment/are equivalent		(1)

Question Number	Acceptable Answers	Reject	Mark
15(g)	Radio waves Ignore electromagnetic radiation	In combination with infrared/microwaves/uv	(1)

Question Number	Acceptable Answers	Reject	Mark
15(h)	Any two from three:		(2)
	Salicylic acid (has O-H at) 3300-2500 (cm ⁻¹)		
	Ignore the phenolic OH between 3750-3200 (cm $^{-1}$) for salicylic acid		
	OR		
	Compound D (has C=O at) 1795 (cm ⁻¹) and		
	1700-1680 (cm ⁻¹) for salicylic acid	1740-1720 (cm ⁻¹)	
	ALLOW 1725-1700 (cm ⁻¹) for salicylic acid		
	OR		
	Compound D (has C-Cl at) 800-600 (cm ⁻¹)		

TOTAL FOR SECTION C (QUESTION 15) = 21 MARKS

TOTAL FOR PAPER = 90 MARKS

www.dynamicpapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL $\,$