

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 6664_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $pq = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
1.	$r = \frac{3}{4}, \ S_4 = 175$	
(a) Way 1	$\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-\frac{3}{4}^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-0.75^{4}\right)}{1-0.75} $ Substituting $r=\frac{3}{4}$ or 0.75 and $n=4$ into the formula for S_n	M1
	$175 = \frac{a\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \Rightarrow a = \frac{175\left(1 - \frac{3}{4}\right)}{\left(1 - \left(\frac{3}{4}\right)^4\right)} \left\{ \Rightarrow a = \frac{\left(\frac{175}{4}\right)}{\left(\frac{175}{256}\right)} \Rightarrow \right\} \underbrace{a = 64}^* $ Correct proof	A1*
(a) Way 2	$a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3$ $a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3$	[2] M1
	$\frac{175}{64}a = 175 \left(\Rightarrow a = \frac{175}{\left(\frac{175}{64}\right)} \right) \Rightarrow \underline{a = 64} *$ or 2.734375 $a = 175 \Rightarrow a = 64$	A1*
		[2]
(a) Way 3	${S_4 =} \frac{64\left(1-\left(\frac{3}{4}\right)^4\right)}{1-\frac{3}{4}} \text{ or } \frac{64\left(1-\frac{3}{4}^4\right)}{1-\frac{3}{4}} \text{ or } \frac{64\left(1-0.75^4\right)}{1-0.75}$ Applying the formula for S_n with $r=\frac{3}{4}, n=4$ and a as 64.	M1
	= 175 so $a = 64*$ Obtains 175 with no errors seen and concludes $a = 64*$.	A1*
(b)	$\{S_{\infty}\}=\frac{64}{\left(1-\frac{3}{4}\right)}; = 256$ $S_{\infty}=\frac{(\text{their }a)}{1-\frac{3}{4}} \text{ or } \frac{64}{1-\frac{3}{4}}$	M1;
	(4) 256	Alcao
(c)	Writes down either "64" $\left(\frac{3}{4}\right)^8$ or awrt 6.4 or $\{D = T_9 - T_{10} = \}$ $64 \left(\frac{3}{4}\right)^8 - 64 \left(\frac{3}{4}\right)^9$ or awrt 4.8, using $a = 64$ or their a	[2] M1
	A correct expression for the difference (i.e. $\pm (T_9 - T_{10})$) using $a = 64$ or their a .	dM1
	$\left\{ = 64 \left(\frac{3}{4} \right)^8 \left(\frac{1}{4} \right) = 1.6018066 \right\} = \underline{1.602} (3 \mathrm{dp})$ 1.602 or -1.602	A1 cao
		[3] 7

		Question 1 Notes			
1. (a)		Allow invisible brackets around fractions throughout all parts of this question.			
()	M1	There are three possible methods as described above.			
	A1	Note that this is a "show that" question with a printed answer.			
In Way 1 this mark usually requires $a = p/q$ where p and q may be unsimplified brackets of formula (or could be $11200/175$ for example) as an intermediate step before the conclusion Exceptions include $a = 175/4 * 256/175$ i.e. multiplication by reciprocal rather than divisio $= 175a/64$ followed by the obvious $a = 64$ These also get A1 In "reverse" methods such as Way 3 we need a conclusion "so $a = 64$ " or some implication their argument is reversible. Also a conclusion can be implied from a preamble, eg: "If I $a = 64$ then find $S = 175$ as given this implies $a = 64$ as required" This is a show that question and there should be no loss of accuracy. In all the methods if decimals are used there should not be rounding . If 0.68359375 appears this is correct. If it is rounded it would not give the exact answer. $64(1-0.31640625)$ or 43.75 are each correct – if they are rounded then treat this as incorrect. g. Way 3: "43.75/0.25 = 175 so $a = 64$ is A1" but "43/0.25 = 175 so $a = 64$ is A0" and "44/0.25 = 175 so $a = 64$ is A0" Yet another variant on Way 3: take $a = 64$ then find the next 3 terms as 48, 36, 27 then					
(b)	M1	add 64+48+36+27 to get 175. Again need conclusion that $a = 64$ or some implication that their argument is reversible. Otherwise M1 A0 $S_{\infty} = \frac{64}{1 - \frac{3}{4}} \text{ or } \frac{\text{(their } a \text{ found in part } (a)\text{)}}{1 - \frac{3}{4}}$			
(0)	IVII	$1 - \frac{3}{4}$ $1 - \frac{3}{4}$			
	A1	256 cao			
(c)	NB	Using Sum of 10 terms minus Sum of 9 terms is NOT a misread Scores M0M0A0			
	M1	Can be implied. Writes down either $64\left(\frac{3}{4}\right)^8$ or $64\left(\frac{3}{4}\right)^9$,			
		using $a = 64$ (or their a found in part (a)).			
	Note	gnore candidate's labelling of terms.			
	Note	$64\left(\frac{3}{4}\right)^8 = 6.407226563$ and $64\left(\frac{3}{4}\right)^9 = 4.805419922$			
	dM1	This is dependent on previous M mark and can be implied. Either			
		$64\left(\frac{3}{4}\right)^8 - 64\left(\frac{3}{4}\right)^9$ or $64\left(\frac{3}{4}\right)^9 - 64\left(\frac{3}{4}\right)^8$ or awrt 6.4 – awrt 4.8, using $a = 64$ (or their a from part (a))			
	Note	1 st M1 and 2 nd M1 can be implied by the value of their			
		3^8 "their <i>a</i> found in part (a)"			
		difference = "their a found in part (a)" $\times \frac{3^8}{4^9} \approx \frac{\text{"their a found in part (a)"}}{40}$			
	Note	Either $64\left(\frac{3}{4}\right)^9 - 64\left(\frac{3}{4}\right)^{10}$ or $64\left(\frac{3}{4}\right)^{10} - 64\left(\frac{3}{4}\right)^9$ is 1st M1, 2nd M0.			
	A1	1.602 or -1.602 cao (This answer with no working is M1M1A1) But 1.6 with no working is M0M0A0			
	Note	$\left\{ D = \frac{1}{4} T_9 \Rightarrow \right\} D = \frac{1}{4} (64) \left(\frac{3}{4} \right)^8 \text{ is } 1^{\text{st}} M1, 2^{\text{nd}} M1$			
	Special case	Obtains awrt 6.4, then obtains awrt 4.8 but rounds to 6 – 5 when subtracting – award M1M1A0			

		www.uynamicpapers.		
Question Number		Scheme	Marks	
	v = 8 - 2	$2^{x-1}, 0, x, 4$		
2. (a)	7		B1 cao	
			[1]	
		Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$	B1;	
(b)	$\int_0^4 (8-2)^4$	$(2^{x-1})dx \approx \frac{1}{2} \times 1; \times \frac{7.5 + 2("their 7" + 6 + 4) + 0}{2}$ For structure of trapezium rule $\frac{1}{2}$ for a candidate's y-ordinates.	<u>M1</u>	
	$\left\{=\frac{1}{2}\times 4\right\}$	1.5 = 20.75 o.e. 20.75	A1 cao	
			[3]	
(c)	Area (R)	$= "20.75" - \frac{1}{2}(7.5)(4)$ $= 5.75$ 5.75	M1	
		= 5.75 5.75	A1 cao	
			[2]	
			6	
		Question 2 Notes		
(b)	B1 M1	For using $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent. Requires the correct $\{\dots\}$ bracket structure. It needs the 7.5 stated but the 0 may be ominner bracket needs to be multiplied by 2 and to be the summation of the remaining y valuable with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark how (unless it is 0)). M0 is awarded if values used in brackets are x values instead of y values For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$	nues in the pe regarded pwever	
	Note	NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2$ $h(a + b)$ used 3 or 4 times Then A1 as before.		
	Special	Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final answer		
	case:	implies that the calculation has been done correctly (then full marks can be given). An ar 37.75 usually indicates this error.		
	Common error:	Many candidates use $\frac{1}{2} \times \frac{4}{5}$ and score B0 Then they proceed with $\frac{7.5 + 2("their 7" + 6 - 4)}{5}$	+4)+0	
		and score M1 This usually gives 16.6 for B0M1A0		
(c)	M1	their answer to (b) – area of triangle with base 4 and height 7.5 or alternative correct me		
		e.g. their answer to (b) $-\int_{0}^{4} \left(7.5 - \frac{7.5}{4}x\right) dx$ (Even if this leads to a negative answer) This	may be	
	A1	implied by a correct answer or by an answer where they have subtracted 15 from their are part (b). Must use answer to part (b). 5.75 or fraction equivalent e.g. $5\frac{3}{4}$ or $\frac{23}{4}$	nswer to	

Question			
Number	Scheme		
3.	P(7, 8) and Q(10, 13)		
(a)	${PQ =} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2}$	$+(13-8)^2$ Applies distance formula. Can be implied.	M1
	$\{PQ\} = \sqrt{34}$	$\sqrt{34}$ or $\sqrt{17}.\sqrt{2}$	A1
		$(x \pm 7)^2 + (y \pm 8)^2 = k,$	[2]
(b)	$(x-7)^2 + (y-8)^2 = 34 \left(\text{or} \left(\sqrt{34} \right)^2 \right)$	$(x \perp i) + (y \perp b) - k$, where k is a positive <u>value</u> .	M1
Way 1		$(x-7)^2 + (y-8)^2 = 34$	A1 oe
		(4 /) (0) 31	[2]
		$x^2 + y^2 \pm 14x \pm 16y + c = 0$,	
(b)	$x^2 + y^2 - 14x - 16y + 79 = 0$	where c is any value < 113 .	M1
Way 2	•	$x^2 + y^2 - 14x - 16y + 79 = 0$	A1 oe
			[2]
(c) Way 1	$\{\text{Gradient of radius}\} = \frac{13-8}{10-7} \text{ or } \frac{5}{3}$	This must be seen or implied in part (c).	В1
	1 (2)	Using a perpendicular gradient method on their	
	Gradient of tangent $= -\frac{1}{m} \left(= -\frac{3}{5} \right)$	gradient. So Gradient of tangent = $-\frac{1}{\text{gradient of radius}}$	M1
	$y - 13 = -\frac{3}{5}(x - 10)$	y - 13 = (their changed gradient) $(x - 10)$	M1
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
			[4]
(c) Way 2	$2(x-7) + 2(y-8)\frac{dy}{dx} = 0$	Correct differentiation (or equivalent). Seen or implied	B1
	dy dy 3	Substituting both $x = 10$ and $y = 13$ into a	
	$2(10-7) + 2(13-8)\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{3}{5}$	valid differentiation to find a value for $\frac{dy}{dx}$	M1
	$y - 13 = -\frac{3}{5}(x - 10)$	y - 13 = (their gradient)(x - 10)	M1
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
(c)		10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0	[4]
Way 3	10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0	10x + 13y - 7(x + 10) - 8(y + 13) + c = 0	
		where c is any value <113	M2
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
			[4]
			8

		Question 3 Notes
(a)	M1	Allow for $\{PQ = \} \sqrt{(7-10)^2 + (8-13)^2}$ or for $\{PQ = \} \sqrt{3^2 + 5^2}$. Can be implied by answer.
	A1	Need to see $\sqrt{34}$. You can ignore subsequent work so $\sqrt{34}$ followed by 5.83 earns M1 A1, but
		$\{PQ = \} \sqrt{3^2 + 5^2} = 5.83$, with no exact value for the answer given, earns M1A0. Allow
		$\pm\sqrt{34}$ this time.
		NB Some use equation of circle to find this distance Achieving $\sqrt{34}$ gets M1A1
		Others find half of their $\pm\sqrt{34}$. Do not isw here as it is an error – confusing d with diameter. Give M1A0
(b)	M1	Either of the correct approaches for equation of circle (as shown on scheme)
	A1	Correct equation (two are shown and any correct equivalent is acceptable)
(c)		
		A correct start to finding the gradient of the tangent (see each scheme)
	B1	Complete method for finding the gradient of the tangent (see each scheme) Where implicit differentiation has been used the only slips allowed here should be sign slips.
	1 st M1	Correct attempt at line equation for tangent at correct point (10, 13) with their tangent gradient. If the $y = mx + c$ method is used to find the equation, this M1 is earned at the point where the x-
	2 nd M1	and y-values are substituted to find c e.g. $13 = -3/5 \times 10 + c$
		Accept any correct answer of the required format; so integer multiple of $3x + 5y - 95 = 0$ or $3x - 95 + 5y = 0$ or $-3x - 5y + 95 = 0$ (must include "=0") e.g. $6x + 10y - 190 = 0$ earns A1
	A1	Also allow $5y + 3x - 95 = 0$ etc
	Common error	$\frac{dy}{dx} = 2(x-7) + 2(y-8) = 6 + 10 = 16 \text{ so } (y-13) = 16(x-10) \text{ is marked B0 M0 M1 A0 (Way 2)}$

Question Number		Scheme		
4.	$f(x) = 6x^3 + 13x^2 - 4$			
(a)	$f\left(-\frac{3}{2}\right) = 6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4 = 5$ Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$			
4.)	f(-2) =	$6(-2)^3 + 13(-2)^2 - 4$ Attempts $f(-2)$.	M1	
(b)	=0, and	so $(x + 2)$ is a factor. $f(-2) = 0$ with no sign or substitution errors and for conclusion.	A1	
		and for Concrusion.	[2]	
(c)		$(x+2) \big\} (6x^2 + x - 2)$	M1 A1	
	=(x	(x+2)(2x-1)(3x+2)	M1 A1	
			[4] 8	
		Question 4 Notes	0	
	Note	Long division scores no marks in part (a). The <u>remainder theorem</u> is required.		
(a)	M1	Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$. $6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4$ or $6\left(\frac{3}{2}\right)^3 + 13\left(\frac{3}{2}\right)^2 - 4$ is so	ıfficient	
	A1	5 cao		
(b)	M1	Attempting $f(-2)$. (This is not given for $f(2)$)		
	A1 Must correctly show $f(-2) = 0$ and give a conclusion in part (b) only. No simplification of terms			
	Note	is required here. Stating "hence factor" or "it is a factor" or a "tick" or "QED" are possible conclusions. Also a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-2) = 0$, $(x + 2)$ is a factor Long division scores no marks in part (b). The <u>factor theorem</u> is required.	_ ''	
	1St N/I		4	
(c)	1st M1 Attempting to divide by $(x + 2)$ leading to a quotient which is quadratic with at least two terms		terms	
	beginning with first term of $\pm 6x^2 + \text{linear}$ or constant term. Or $f(x) = (x+2)(\pm 6x^2 + \text{linear})$ (This may be seen in part (b) where candidates did			
		not use factor theorem and might be referred to here)	ates ara	
	1st A1 $(6x^2 + x - 2)$ seen as quotient or as factor. If there is an error in the division resulting in a			
	remainder give A0, but allow recovery to gain next two marks if $(6x^2 + x - 2)$ is used			
	2 nd M1 A1	For a <i>valid</i> attempt to factorise their three term quadratic. $(x + 2)(2x - 1)(3x + 2)$ and needs all three factors on the same line.		
	Special	Ignore subsequent work (such as a solution to a quadratic equation). Calculator methods:		
	cases	Award M1A1M1A1 for correct answer $(x + 2)(2x - 1)(3x + 2)$ with no working.		
	Award M1A0M1A0 for either $(x + 2)(2x + 1)(3x + 2)$ or $(x + 2)(2x + 1)(3x - 2)$ or $(x + 2)(2x + 1)(2x - 2)$ grith as graphing (A4) best one has the incorrect.			
		(x+2)(2x-1)(3x-2) with no working. (At least one bracket incorrect)		
		Award M1A1M1A1 for $x = -2$, $\frac{1}{2}$, $-\frac{2}{3}$ followed by $(x + 2)(2x - 1)(3x + 2)$.		
		Award M0A0M0A0 for a candidate who writes down $x = -2, \frac{1}{2}, -\frac{2}{3}$ giving no factors.		
		Award M1A1M1A1 for $6(x+2)(x-\frac{1}{2})(x+\frac{2}{3})$ or $2(x+2)(x-\frac{1}{2})(3x+2)$ or equivalent		
		Award SC: M1A0M1A0 for $x = -2$, $\frac{1}{2}$, $-\frac{2}{3}$ followed by $(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$.		

Question Number	Scheme		Marks
5.	(a) $(2-9x)^4 = 2^4 + {}^4C_12^3(-9x) + {}^4C_22^2(-9x)^2$, (b) $f(x) = (1+kx)(2-9x)^4 = A-232x + Bx^2$		
(a)	First term of 16 in their final series		
Way 1	At least one of $({}^4C_1 \times \times x)$ or $({}^4C_2 \times \times x^2)$		B1 M1
	2	At least one of $-288x$ or $+1944x^2$	A1
	$= (16) - 288x + 1944x^2 \dots$	Both $-288x$ and $+1944x^2$	A1
			[4]
(a)	$(2-9x)^4 = (4-36x+81x^2)(4-36x+81x^2)$		
	·	First term of 16 in their final series Attempts to multiply a 3 term	B1
Way 2	$= 16 - 144x + 324x^2 - 144x + 1296x^2 + 324x^2$	quadratic by the same 3 term quadratic to achieve either 2 terms in	M1
		x or at least 2 terms in x^2 .	
	$= (16) - 288x + 1944x^2 $	At least one of $-288x$ or $+1944x^2$	A1
	= (10) 200X + 15 + 1X	Both $-288x$ and $+1944x^2$	A1
	·····		[4]
(a) Way 3	$\left\{ (2-9x)^4 = \right\} \ 2^4 \left(1 - \frac{9}{2}x \right)^4$	First term of 16 in final series	B1
	$((0)) 4(3) (0)^{2})$	At least one of	
	$= 2^{4} \left(1 + 4 \left(-\frac{9}{2}x \right) + \frac{4(3)}{2} \left(-\frac{9}{2}x \right)^{2} + \dots \right)$	$(4 \times \times x)$ or $\left(\frac{4(3)}{2} \times \times x^2\right)$	M1
		At least one of $-288x$ or $+1944x^2$	A1
	$= (16) - 288x + 1944x^2$	Both $-288x$ and $+1944x^2$	A1
			[4]
	Parts (b), (c) and (d) may be marked together		
(b)	<i>A</i> = "16"	Follow through their value from (a)	B1ft [1]
(5)	$\left\{ (1+kx)(2-9x)^4 \right\} = (1+kx)(16-288x+\{1944x^2+\})$	May be seen in part (b) or (d)	M1
(c)		and can be implied by work in parts (c) or (d).	M1
	x terms: -288x + 16kx = -232x	ραι ις (ε) σι (α).	
	<u>-</u>	, 7	A 1
	giving, $16k = 56 \implies k = \frac{7}{2}$	$\frac{k = \frac{1}{2}}{2}$	A1
	······································		[2]
(d)	x^2 terms: $1944x^2 - 288kx^2$		
	So, $B = 1944 - 288 \left(\frac{7}{2}\right)$; = 1944 - 1008 = 936		M1
	2), = 1744 200(2), = 1744 1000 = 750	936	A1
			[2]
			9

		Question 5 N	otes	
(a)	D1 000	16		
Ways 1 and 3	B1 cao			
	M1	Correct binomial coefficient associated with corr		
		They may have 4 and 6 or 4 and $\frac{4(3)}{2}$ or even $\left(\right.$	$\binom{4}{1}$ and $\binom{4}{2}$ as their coefficients. Allow missing	
		signs and brackets for the M marks.		
	1st A1	At least one of $-288x$ or $+1944x^2$ (allow +- $288x$)		
	2 nd A1	Both $-288x$ and $+1944x^2$ (May list terms separated by commas) Also full marks for correct answer with no working here. Again allow +- $288x$		
	Note	If the candidate then divides their final correct answer through by 8 or any other common factor then isw and mark correct series when first seen. So (a) B1M1A1A1 .It is likely that this approximately be followed by (b) B0, (c) M1A0, (d) M1A0 if they continue with their new series e.g. $2-36x+283x^2+$ (Do not ft the value 2 as a mark was awarded for 16)		
Way 2b	Special Case	Slight Variation on the solution given in the so	cheme	
	Case	$(2-9x)^4 = (2-9x)(2-9x)(4-36x+81x^2)$		
		$= (2-9x)(8-108x+486x^2+)$		
			First term of 16 B1	
		$= 16 - 216x + 972x^2 - 72x + 972x^2$	Multiplies out to give either	
			2 terms in x or 2 terms in x^2 .	
		$= (16) - 288x + 1944x^2 + \dots$	At least one of $-288x$ or $+1944x^{2}$ A1	
			Both $-288x$ and $+1944x^2$ A1	
(b)	B1ft	Parts (b), (c) and (d) may be marked together. Must identify $A = 16$ or $A = their$ constant term clearly their answer to part (b). If they expand th not sufficient for this mark.		
(c)	3.54			
(-)	M1	Candidate shows intention to multiply $(1+kx)$ by	•	
	Note	e.g. Just $(1 + kx)(16 - 288x +)$ or $(1 + kx)(16 - 288x +)$ or $(1 + kx)(16 - 288x +)$ This mark can also be implied by candidate mult	iplying out to find two terms	
		(or coefficients) in x. i.e. f.t. their $-288x + 16kx$ brackets is M0 – allow copying slips, or use of fa		
	A1	$k = \frac{7}{2}$ o.e. so 3.5 is acceptable		
(d)	M1	Multiplies out their $(1 + kx)(16 - 288x + 1944x^2)$	+) to give exactly two terms (or coefficients)	
	A1	in x^2 and attempts to find B using these two term 936	ms and a numerical value of k .	
	Note	Award A0 for $B = 936x^2$		
		But allow A1 for $B = 936x^2$ followed by $B = 936x^2$	36 and treat this as a correction	
		Correct answers in parts (c) and (d) with no method shown may be awarded full credit.		

0	• • • •	
Question Number	Scheme	Marks
6.	$1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0; -\pi < \theta,, \pi$	
(i)	$\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ or $-\frac{1}{2}$	M1
	$\theta = \left\{ -\frac{2\pi}{15}, \frac{8\pi}{15} \right\}$ At least one of $-\frac{2\pi}{15}$ or $\frac{8\pi}{15}$ or -24° or 96° or awrt 1.68 or awrt -0.419 $\frac{2\pi}{15} = \frac{8\pi}{15}$	A1
	Both $-\frac{2\pi}{15}$ and $\frac{8\pi}{15}$	A1
		[3]
NB Misread	Misreading $\frac{\pi}{5}$ as $\frac{\pi}{6}$ or $\frac{\pi}{3}$ (or anything else)– treat as misread so M1 A0 A0 is maximum mark	
	$4\cos^2 x + 7\sin x - 2 = 0$, 0 ,, $x < 360^\circ$	
(ii)	$4(1-\sin^2 x) + 7\sin x - 2 = 0$ Applies $\cos^2 x = 1-\sin^2 x$	M1
	$4 - 4\sin^2 x + 7\sin x - 2 = 0$	
	$4\sin^2 x - 7\sin x - 2 = 0$ Correct 3 term, $4\sin^2 x - 7\sin x - 2 = 0$	A1 oe
	$(4\sin x + 1)(\sin x - 2)$ {= 0}, $\sin x =$ Valid attempt at solving and $\sin x =$	M1
	$\sin x = -\frac{1}{4}, \{\sin x = 2\}$ $\sin x = -\frac{1}{4} \text{ (See notes.)}$	A1 cso
	At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or $x = \text{awrt}\{194.5, 345.5\}$ awrt 6.0	A1ft
	awrt 194.5 and awrt 345.5	A1
		[6] 9
NB	Writing equation as $4\cos^2 x - 7\sin x - 2 = 0$ with a sign error should be marked by applying	
Misread	the scheme as it simplifies the solution (do not treat as misread) Max mark is 3/6	
	$4(1-\sin^2 x) - 7\sin x - 2 = 0$	M1
	$4\sin^2 x + 7\sin x - 2 = 0$	A0
	$(4\sin x - 1)(\sin x + 2)$ $\{= 0\}$, $\sin x =$ Valid attempt at solving and $\sin x =$	M1
	$\sin x = +\frac{1}{4}, \left\{\sin x = -2\right\}$ $\sin x = \frac{1}{4} \text{ (See notes.)}$	A0
	x = awrt165.5	A1ft
	Incorrect answers	A0

		Question 6 Notes
(i)	M1	Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \pm \frac{1}{2}$
	Note	M1 can be implied by seeing either $\frac{\pi}{3}$ or 60° as a result of taking $\cos^{-1}()$.
	A1	Answers may be in degrees or radians for this mark and may have just one correct answer Ignore mixed units in working if correct answers follow (recovery)
	A1	Both answers correct and in radians as multiples of π $-\frac{2\pi}{15}$ and $\frac{8\pi}{15}$
		Ignore EXTRA solutions outside the range $-\pi < \theta \le \pi$ but lose this mark for extra solutions in this range.
(ii)	1 st M1	Using $\cos^2 x = 1 - \sin^2 x$ on the given equation. [Applying $\cos^2 x = \sin^2 x - 1$, scores M0.]
	1st A1	Obtaining a correct three term equation eg. either $4\sin^2 x - 7\sin x - 2 = 0$
		or $-4\sin^2 x + 7\sin x + 2 = 0$ or $4\sin^2 x - 7\sin x = 2$ or $4\sin^2 x = 7\sin x + 2$, etc.
	2 nd M1	For a valid attempt at solving a 3TQ quadratic in sine. Methods include factorization, quadratic formula, completion of the square (unlikely here) and calculator. (See notes on page 6 for genera principles on awarding this mark) Can use any variable here, s , y , x or $\sin x$, and an attempt to find at least one of the solutions for $\sin x$. This solution may be outside the range for $\sin x$
	2 nd A1	$\sin x = -\frac{1}{4}$ BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore extra answer
		of $\sin x = 2$, but penalise if candidate states an incorrect result. e.g. $\sin x = -2$.
	Note	$\sin x = -\frac{1}{4}$ can be implied by later correct working if no errors are seen.
	3 rd A1ft	At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0. This is a limited follow through.
		Only follow through on the error $\sin x = \frac{1}{4}$ and allow for 165.5 special case (as this is equivalent
		work) This error is likely to earn M1A1M1A0A1A0 so 4/6 or M1A0M1A0A1A0 if the quadratic had a sign slip.
	4 th A1 Note	awrt 194.5 and awrt 345.5 If there are any EXTRA solutions inside the range 0 , $x < 360^{\circ}$ and the candidate would
	Note	otherwise score FULL MARKS then withhold the final A1 mark.
	Special	Ignore EXTRA solutions outside the range 0 , $x < 360^{\circ}$.
	Cases	Rounding error Allow M1A1M1A1A1A0 for those who give two correct answers but
		wrong accuracy e.g. awrt 194, 346 (Remove final A1 for this error) Answers in radians:— lose final mark so either or both of 3.4, 6.0 gets A1ftA0 It is possible to earn M1A0A1A1 on the final 4 marks if an error results fortuitously in $\sin x = -1/4$ then correct work follows.

0 4:			3 1 1	
Question Number		Scheme		Marks
		5	Either	M1 -
7. (a)	$\int \int \int 3x - x^{\frac{3}{2}}$	$dx = \frac{3x^2}{2} - \frac{x^2}{\left(\frac{5}{2}\right)} \left\{+c\right\}$	$3x \to \pm \lambda x^2 \text{ or } x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}, \ \lambda, \ \mu \neq 0$	
7. (a)	(]($\left(\frac{5}{2}\right)$	At least one term correctly integrated	A1
		(2)	Both terms correctly integrated	A1
(1-)			C.4	[3]
(b)	$0 = 3x - x^{\frac{3}{2}}$	$\Rightarrow 0 = 3 - x^{\frac{1}{2}} \text{or} 0 = x \left(3 - x^{\frac{1}{2}}\right) \Rightarrow x = \dots$	Sets $y = 0$, in order to find	M1 \
		the correct $x^{\frac{1}{2}} = 3$ or $x = 9$		
	$\begin{cases} \operatorname{Area}(S) = [$	$\left[\frac{3x^2}{2} - \frac{2}{5}x^{\frac{5}{2}}\right]_0^9$		
	$=\left(\frac{3(9)^2}{2} - \right)$	$\left(\frac{2}{5}\right)(9)^{\frac{5}{2}} - \{0\}$	Applies the limit 9 on an integrated function with no wrong lower limit .	ddM1
	\[\(\) (243 4	86) (0) 243	$\frac{243}{10}$ or 24.3	A1
	$\left\{ \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right\}$	$\left. \frac{86}{5} \right) - \left\{ 0 \right\} \right\} = \frac{243}{10} \text{ or } 24.3$	10 01 24.3	oe
				[3]
		Question 7 N	otes	6
(a)	M1	Either $3x \to \pm \lambda x^2$ or $x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}$, $\lambda, \mu \neq 0$		
()	1122	Either $3x \to \pm \lambda x$ or $x^2 \to \pm \mu x^2$, λ , $\mu \neq 0$		
	1st A1 At least one term correctly integrated. Can be simplified or un-simplified but power must be simplified. Then isw.			
	2 nd A1	Both terms correctly integrated. Can be un-sim denominator and power should be a single num there are errors simplifying. Ignore the omissio	iber. (e.g. 2 – not 1+1) Ignore subsequent wo	ork if
(b)	1 st M1	Sets $y = 0$, and reaches the correct $x^{\frac{1}{2}} = 3$ or	$x = 9$ (isw if $x^{\frac{1}{2}} = 3$ is followed by $x = \sqrt{3}$	$\overline{3}$)
	1 1111	1	•	
		Just seeing $x = \sqrt{3}$ without the correct $x^{\overline{2}} =$	3 gains M0. May just see $x = 9$.	
		Use of trapezium rule to find area is M0A0 as h	nence implies integration needed.	
	This mark is dependent on the two previous method marks and needs both to have been awarded. Sees the limit 9 substituted in an integrated function. (Do not follow through their value of x) Do not need to see MINUS 0 but if another value is used as lower limit – this is M0. This mark may be implied by 9 in the limit and a correct answer.			
	A1 $\frac{243}{10}$ or 24.3			
	Common	Common Error $0 = 3x - x^{\frac{3}{2}} \Rightarrow x^{\frac{1}{2}} = 3$ so $x = 3$	$=\sqrt{3}$	
	Error	Then uses limit $\sqrt{3}$ etc gains M1 M0 A0 s		
	1	, 6		

Question Number	Scheme		
8(i)	Two Ways of answering the question are given in part (i)		
Way 1	$\log_3\left(\frac{3b+1}{a-2}\right) = -1$ or $\log_3\left(\frac{a-2}{3b+1}\right) = 1$ Applying the subtraction law of logarithms	M1	
	$\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\} \text{or} \left(\frac{a-2}{3b+1} \right) = 3$ Making a correct connection between log base 3 and 3 to a power.	M1	
	${9b+3=a-2 \Rightarrow} b = \frac{1}{9}a - \frac{5}{9}$ $b = \frac{1}{9}a - \frac{5}{9}$ or $b = \frac{a-5}{9}$	A1 oe [3]	
	In Way 2 a correct connection between log base 3 and "3 to a power" is used before applying the subtraction or addition law of logs	[v]	
(i) Way 2	Either $\log_3(3b+1) - \log_3(a-2) = -\log_3 3$ or $\log_3(3b+1) + \log_3 3 = \log_3(a-2)$	2 nd M1	
vvay 2	$\log_3(3b+1) = \log_3(a-2) - \log_3 3 = \log_3\left(\frac{a-2}{3}\right)$ or $\log_3 3(3b+1) = \log_3(a-2)$	1 st M1	
	${3b+1=\frac{a-2}{3}}$ $b=\frac{1}{9}a-\frac{5}{9}$	A1	
		[3]	
(::)	Five Ways of answering the question are given in part (ii) $(32)^{(2^2x)} = 7(2^x) = 0$	N/1	
(ii) Way 1	$32(2^{2x}) - 7(2^x) = 0$ Deals with power 5 correctly giving ×32	M1	
See also common approach below in notes	So, $2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or awrt 0.219	A1 oe dM1	
	$x \log 2 = \log \left(\frac{7}{32}\right)$ or $x = \frac{\log \left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2 \left(\frac{7}{32}\right)$ A valid method for solving $2^x = \frac{7}{32}$ Or $2^x = k$ to achieve $x = \dots$		
	x = -2.192645 awrt -2.19	A1 [4]	
		L - J	
	Begins with $2^{2x+5} = 7(2^x)$ (for Way 2 and Way 3) (see notes below)		
(ii) Way 2	Correct application of $(2x + 5)\log 2 = \log 7 + x \log 2$ either the power law or addition law of logarithms	M1	
	Correct result after applying the power and addition laws of logarithms.	A1	
	$2x \log 2 + 5 \log 2 = \log 7 + x \log 2$ $\Rightarrow x = \frac{\log 7 - 5 \log 2}{\log 2}$ Multiplies out, collects x terms to achieve $x =$	dM1	
	$\log 2$ $x = -2.192645$ awrt -2.19	A1	
		[4]	
(ii)	Evidence of \log_2 and either $2^{2x+5} \rightarrow 2x+5$	M1	
Way 3	$2x + 5 = \log_2 7 + x$ or $7(2^x) \to \log_2 7 + \log_2 (2^x)$ $2x + 5 = \log_2 7 + x$ oe.	A1	
	$2x - x = \log_2 7 - 5$ $\Rightarrow x = \log_2 7 - 5$ Collects x terms to achieve $x =$	dM1	
	x = -2.192645 awrt -2.19	A1 [4]	

		, , , ,		
(ii) Way 4	$2^{2x+5} = 7(2^x) \implies 2^{x+5} = 7$			
	las 7	Evidence of log ₂	M1	
	$x + 5 = \log_2 7 \text{ or } \frac{\log 7}{\log 2}$	and either $2^{x+5} \rightarrow x+5$ or $7 \rightarrow \log_2 7$	M1	
	10g 2	$x + 5 = \log_2 7$ oe.	A1	
	$x = \log_2 7 - 5$	Rearranges to achieve $x =$	dM1	
	x = -2.192645	awrt -2.19	A1	
			[4]	
Way 5 (similar to	$2^{2x+5} = 2^{\log_2 7} (2^x)$	7 is replaced by $2^{\log_2 7}$	M1	
Way 3)	$2x + 5 = \log_2 7 + x$	$2x + 5 = \log_2 7 + x$ oe.	A1	
	$2x - x = \log_2 7 - 5$ $\Rightarrow x = \log_2 7 - 5$	Collects x terms to achieve $x =$	dM1	
	x = -2.192645	awrt –2.19	A1	
			[4]	
			7	

		Question 8 Notes					
(i)							
		any two log terms into one log term.					
	2nd M1	For making a correct connection between log base 3 and 3 to a power.					
	A1	$b = \frac{1}{9}a - \frac{5}{9} \text{ or } b = \frac{a-5}{9} \text{ o.e. e.g. Accept } b = \frac{1}{3}\left(\frac{a}{3} - \frac{5}{3}\right) \text{ but not } b = \frac{a-2}{9} - \frac{3}{9} \text{ nor } b = \frac{\left(\frac{a}{3} - \frac{5}{3}\right)}{3}$ First start towards solution, an equation with one gids on other correct or one term dealt with					
(ii)	1 st M1	First step towards solution – an equation with one side or other correct or one term dealt with correctly (see five* possible methods above)					
	1st A1	Completely correct first step – giving a correct equation as shown above					
	dM1	Correct complete method (all log work correct) and working to reach $x = \text{in terms of logs}$					
	reaching a correct expression or one where the only errors are slips solving linear						
	2 nd A1	Accept answers which round to -2.19 If a second answer is also given this becomes A0					
	Special Case in (i) Writes $\frac{\log_3(3b+1)}{\log_3(a-2)} = -1$ and proceeds to $\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\}$ and to correct answ M0M1A1 (special case)						
	Common	Let $2^x = y$ Treat this as Way 1 They get $32y^2 - 7y = 0$ for M1 and need to reach $y = \frac{7}{32}$ for A1					
	approach to part	Then back to Way 1 as before. Any letter may be used for the new variable which I have called y.					
	(ii)	If they use x and obtain $x = \frac{7}{32}$, this may be awarded M1A0M0A0					
		Those who get $y^2 - 7y + 32 = 0$ or $y^7 - 7y = 0$ will be awarded M0,A0,M0,A0					
	Common	Many begin with $\log(2^{2x+5}) - \log(7(2^x)) = 0$. It is possible to reach this in two stages					
	Present- ation of Work in	correctly so do not penalise this and award the full marks if they continue correctly as in Way 2 . If however the solution continues with $(2x+5)\log 2 - x\log 14 = 0$ or with					
	ii	$(2x+5)\log 2 - 7x\log 2 = 0$ (both incorrect) then they are awarded M1A0M0A0 just getting					
	Note	credit for the $(2x + 5) \log 2$ term. N.B. The answer (+)2.19 results from "algebraic errors solving linear equations" leading to $2^x = \frac{32}{7}$ and gets M1A0M1A0					

Question Number	Scheme		
9. (a)	Area(FEA) = $\frac{1}{2}x^2\left(\frac{2\pi}{3}\right)$; = $\frac{\pi x^2}{3}$ $\frac{1}{2}x^2 \times \left(\frac{2\pi}{3}\right)$ or $\frac{120}{360} \times \pi x^2$ simplified or unsimplified		
	$\frac{2}{3}$ $\frac{\pi x^2}{3}$	A1	
		[2]	
	Parts (b) and (c) may be marked together		
(b)	$A = \frac{1}{2}x^2 \sin 60^\circ + \frac{1}{2}\pi x^2 + 2xy$ Attempt to sum 3 areas (at least one correct) Correct expression for at least two terms of A	M1	
(0)	Correct expression for at least two terms of A	A1	
	$1000 = \frac{\sqrt{3} x^2}{4} + \frac{\pi x^2}{3} + 2xy \implies y = \frac{500}{x} - \frac{\sqrt{3} x}{8} - \frac{\pi x}{6}$ $\implies y = \frac{500}{x} - \frac{x}{24} \left(4\pi + 3\sqrt{3} \right) *$ Correct proof.	A1 *	
		[3]	
(c)	${P = }x + x\theta + y + 2x + y = {= 3x + \frac{2\pi x}{3} + 2y}$ Correct expression in x and y for their θ measured in rads	B1ft	
	2 $y = +2\left(\frac{500}{x} - \frac{x}{24}(4\pi + 3\sqrt{3})\right)$ Substitutes expression from (b) into y term.	M1	
	$P = 3x + \frac{2\pi x}{3} + \frac{1000}{x} - \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x \Rightarrow P = \frac{1000}{x} + 3x + \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x$		
	$\Rightarrow P = \frac{1000}{x} + \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3} \right) *$ Correct proof.	A1 *	
	Death (d) and (e) alternal library and alternative	[3]	
	Parts (d) and (e) should be marked together $\frac{1000}{x} \rightarrow \frac{\pm \lambda}{x^2}$	M1	
(d)	$\frac{dP}{dx} = -1000x^{-2} + \frac{4\pi + 36 - 3\sqrt{3}}{12}; = 0$ Correct differentiation (need not be simplified).	A1;	
	Their $P' = 0$	M1	
	$\Rightarrow x = \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \text{ (= 16.63392808)} \qquad \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \text{ or awrt 17 (may be implied)}$	A1	
	$\left\{ P = \frac{1000}{(16.63)} + \frac{(16.63)}{12} \left(4\pi + 36 - 3\sqrt{3} \right) \right\} \Rightarrow P = 120.236 \text{ (m)}$ awrt 120	A1	
		[5]	
	Finds P'' and considers sign. $d^2P = 2000$ 2000	M1	
(e)	$\frac{d^2 P}{dx^2} = \frac{2000}{x^3} > 0 \Rightarrow \text{Minimum} \qquad \frac{2000}{x^3} \text{ (need not be simplified) and } > 0 \text{ and conclusion.}$ Only follow through on a correct P'' and x in range $10 < x < 25$.	A1ft	
	only to the manager of a content of the manager of the content of	[2] 15	

		Question 9 Notes
(a)	M1	Attempts to use Area(FEA) = $\frac{1}{2}x^2 \times \frac{2\pi}{3}$ (using radian angle) or $\frac{120}{360} \times \pi x^2$ (using angle in
	1411	2 3
		degrees)
	A1	$\frac{\pi x^2}{3}$ cao (Must be simplified and be their answer in part (a)) Answer only implies M1A1.
		N.B. Area(FEA) = $\frac{1}{2}x^2 \times 120$ is awarded M0A0
(L.)		
(b)	M1	An attempt to sum 3 " areas" consisting of rectangle, triangle and sector (allow slips even in dimensions) but one area should be correct
	1st A1	Correct expression for two of the three areas listed above.
		Accept any correct equivalents e.g. two correct from $\frac{1}{2}x^2 \sin\left(\frac{\pi}{3}\right)$ or $\frac{1}{4}x^2\sqrt{3}$, $\frac{1}{2}\times\frac{2}{3}\pi x^2$, $2xy$
	3	This is a given answer which should be stated and should be achieved without error so all three
	2 nd A1*	areas must have been correct and their sum put equal to 1000 and an intermediate step of
		rearrangement should be present.
(c)		Correct expression for P from arc length, length AB and three sides of rectangle in terms of bot
(0)	B1ft	x and y with $2y$ (or $y + y$), $3x$ (or $x + 2x$) (or $x + x + x$), and $x\theta$ clearly listed. Allow addition
		after substitution of y.
		NB $\theta = \frac{2\pi}{3}$ but allow use of their consistent θ in radians (usually $\theta = \frac{\pi}{3}$) from parts (a) and
		3 (b) for this mark. 120x or 60x do not get this mark.
	M1	Substitutes $y = \frac{500}{x} - \frac{x}{24} (4\pi + 3\sqrt{3})$ or their unsimplified attempt at y from earlier (allow
		slips e.g. sign slips) into 2y term.
	A1*	This is a given answer which should be stated and should be achieved without error
(d)	1st M1	Need to see at least $\frac{1000}{r} \rightarrow \frac{\pm \lambda}{r^2}$
	1st A1	Correct differentiation of both terms (need not be simplified) Not follow through. Allow any
		correct equivalent.
		e.g. $\frac{dP}{dx} = -1000x^{-2} + \frac{\pi}{3} + 3 - \frac{\sqrt{3}}{4}$ Also allow $\frac{dP}{dx} = -1000x^{-2} + awrt$ 3.61
		Check carefully as there are many correct equivalents and some have two terms in $x\pi$ to $2\pi - 8\pi - \pi$
		differentiate obtaining for example $\frac{2\pi}{3} - \frac{8\pi}{24}$ instead of $\frac{\pi}{3}$
	2 nd M1	Setting their $\frac{dP}{dx} = 0$. Do not need to find x, but if inequalities are used this mark cannot be
		gained until candidate states or uses a value of x without inequalities. May not be explicit but
		may be implied by correct working and value or expression for x . May result in $x^2 < 0$ so M1A0
	2 nd A1	There is no requirement to write down a value for x, so this mark may be implied by a correct
	and	value for <i>P</i> . It may be given for a correct expression or value for <i>x</i> of 16.6, 16.7 or 17
	3 rd A1	Allow answers wrt 120 but not 121
(e)	M1	Finds P'' and considers sign. Follow through correct differentiation of their P' (not just
		reduction of power)
	A1ft	Need $\frac{2000}{x^3}$ and > 0 (or positive value) and conclusion. Only follow through on a correct P''
		and a value for x in the range $10 < x < 25$ (need not see x substituted but an x should have been
		found) If P is substituted then this is awarded M1 A0

Special	(d) Some candidates multiply P by 12 to "simplify" If they will edynamic papers.com
case	$\frac{dP}{dx} = -12000x^{-2} + 4\pi + 36 - 3\sqrt{3}$; = 0 then solve they will get the correct x and P They
	should be awarded M1A0M1A1A1 in part (d). If they then do part (e) writing
	$\frac{d^2P}{dx^2} = \frac{24000}{x^3} > 0 \Rightarrow \text{Minimum They should be awarded M1A0 (so lose 2 marks in all)}$
	If they wrote $\frac{d(12P)}{dx} = -12000x^{-2} + 4\pi + 36 - 3\sqrt{3}$; = 0 etc they could get full marks.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL		