Surname	Other nam	es
Pearson Edexcel GCE	Centre Number	Candidate Number
Core Mat Advanced Subsidi		
Wednesday 18 May 2016 Time: 1 hour 30 minute	•	Paper Reference 6663/01

Calculators may NOT be used in this examination.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

	www.uynaniicpapers.cor
Find	
$\int \left(2x^4 - \frac{4}{\sqrt{x}} + 3\right) \mathrm{d}x$	
giving each term in its simplest form.	
giving even term in no omiprese room.	(4)

(Total 4 marks)

	Express 9^{3x+1} in the form 3^y , giving y in the form $ax + b$, where a and b are constants. (2)
_	
_	(Total 2 marks)

		www.dynamicpape	15.001
3.	(a)	Simplify $\sqrt{50} - \sqrt{18}$	
		giving your answer in the form $a\sqrt{2}$, where a is an integer.	(2)
	(b)	Hence, or otherwise, simplify	
		$\frac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$	
		giving your answer in the form $b\sqrt{c}$, where b and c are integers and $b \neq 1$	(3)

Question 3 continued	Leave blank
Question 5 continued	
	Q3
(Total 5 marks)	

www.dynamicpapers.com

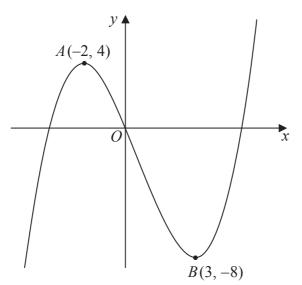


Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x). The curve has a maximum point A at (-2, 4) and a minimum point B at (3, -8) and passes through the origin O.

On separate diagrams, sketch the curve with equation

(a)
$$y = 3f(x)$$
, (2)

(b)
$$y = f(x) - 4$$
 (3)

On each diagram, show clearly the coordinates of the maximum and the minimum points and the coordinates of the point where the curve crosses the *y*-axis.

6

	www.dynamicpapers.com	
		Leave
Question 4 continued		blank
Question i continueu		
		Q4
	(Total 5 marks)	
		i ,

y + 4x + 1 = 0	
$y^2 + 5x^2 + 2x = 0$	
	(6)

www.dynamicpapers.co		m	
Question 5 continued		Leave blank	
		05	
	(Total 6 marks)	Q5	

6. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 4$$
,

$$a_{n+1} = 5 - ka_n, \quad n \geqslant 1$$

where k is a constant.

(a) Write down expressions for a_2 and a_3 in terms of k.

(2)


Find

(b) $\sum_{r=1}^{3} (1 + a_r)$ in terms of k, giving your answer in its simplest form,

(3)

(c) $\sum_{r=1}^{100} (a_{r+1} + ka_r)$

(1)

\	www.dynamicpapers.com	
		Leave
Question 6 continued		blank
		0.6
		Q6
	(Total 6 marks)	

7. Given that

$$y = 3x^2 + 6x^{\frac{1}{3}} + \frac{2x^3 - 7}{3\sqrt{x}}, \quad x > 0$$

find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	Give each term	n in your an	swer in its simpl	ified form.
--	----------------	--------------	-------------------	-------------

(6)

		Leave blank
Question 7 continued		Dialik
		Q 7
	(Total 6 marks)	

www.dynamicpapers.com

8.	The straight line with equation $y = 3x - 7$ does not cross or touch the curve with	
•	equation $y = 2px^2 - 6px + 4p$, where p is a constant.	
	(a) Show that $4p^2 - 20p + 9 < 0$	
		(4)
		. ,
	(b) Hence find the set of possible values of <i>p</i> .	
		(4)

	Leave blank
Question 8 continued	
	Q8
(Total 8 marks)	

www.dynamicpapers.com

- 9. On John's 10th birthday he received the first of an annual birthday gift of money from his uncle. This first gift was £60 and on each subsequent birthday the gift was £15 more than the year before. The amounts of these gifts form an arithmetic sequence.
 - (a) Show that, immediately after his 12th birthday, the total of these gifts was £225

(1)

(b) Find the amount that John received from his uncle as a birthday gift on his 18th birthday.

(2)

(c) Find the total of these birthday gifts that John had received from his uncle up to and including his 21st birthday.

(3)

When John had received n of these birthday gifts, the total money that he had received from these gifts was £3375

(d) Show that $n^2 + 7n = 25 \times 18$

(3)

(e) Find the value of n, when he had received £3375 in total, and so determine John's age at this time.

(2)

www.dynamicpapers.com		
	Leave	
	blank	
Question 9 continued		

www.dynamicpapers.coi	TI .
	Leave
	blank
Question 9 continued	0141111
Question 9 continued	
	Q9
(Total 11 marks)	
(IOTALII MARKS)	1 1

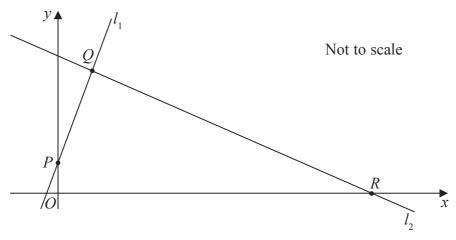


Figure 2

The points P(0, 2) and Q(3, 7) lie on the line l_1 , as shown in Figure 2.

The line l_2 is perpendicular to l_1 , passes through Q and crosses the x-axis at the point R, as shown in Figure 2.

Find

(a) an equation for l_2 , giving your answer in the form ax + by + c = 0, where a, b and c are integers,

(5)

(b) the exact coordinates of R,

(2)

(c) the exact area of the quadrilateral *ORQP*, where *O* is the origin.

(5)

www.dynamicpape	www.dynamicpapers.com		
Question 10 continued		Leave blank	

www.dyr	namicpapers.com	
Question 10 continued		Leave blank
		Ω10
	(Total 12 marks)	Q10

11. The curve C has equation $y = 2x^3 + kx^2 + 5x + 6$, where k is a constant.

(a) Find $\frac{dy}{dx}$

(2)

The point P, where x = -2, lies on C.

The tangent to C at the point P is parallel to the line with equation 2y - 17x - 1 = 0

Find

(b) the value of k,

(4)

(c) the value of the y coordinate of P,

(2)

(d) the equation of the tangent to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(2)

www.dynamicpapers.co	m
•	Leave
Overtion 11 continued	blank
Question 11 continued	

	www.dynamicpapers.com	
Question 11 continued		Leave blank

