

Mark Scheme (Results)

Summer 2012

International GCSE
Chemistry (4CH0) Paper 1C
Science Double Award (4SC0) Paper 1C

Edexcel Level 1/Level 2 Certificate Chemistry (KCHO) Paper 1C Science (Double Award) (KSCO) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UG031876
All the material in this publication is copyright
© Pearson Education Ltd 2012

INTERNATIONAL GCSE CHEMISTY PAPER 1C – SUMMER 2012

Question number		Expected Answ	ver	Accept	Reject	Marks
1 (a)						6
		measuring cylinder	В	Ignore extra		
	Or 2D diagram		C Ignore D	apparatus on top of tripod eg beaker Minimum is 2 vertical or diagonal lines with something on top		
		(top pan) balance /scale(s) / weighing machine	A or E			
	1 mark for eac	h correct answer				

Question number	Expected Answer	Accept	Reject	Marks
1 (b)	M1 wear (safety) glasses / spectacles / goggles / eye protection M2 salt /solution / water may spit out (when evaporating the salty water) / may get in your eye IGNORE references to hazards eg toxic / irritant OR M1 use (beaker) tongs / hot hand / (rigger/oven) glove(s) (to remove / lift the basin) M2 basin will / may be hot OR M1 tie hair back / tuck in tie M2 might catch fire (in Bunsen burner) the reason must match the precaution IGNORE references to wearing lab. coats / protective clothing	leave basin (to cool) before removing to avoid burning hand	crucible tongs / plastic gloves	1
(c)	$(2.9 \times 2) = 5.8 (g)$			1

number	Expected Answer	Accept	Reject	Marks
2 (a) (i)	M1 calcium M2 magnesium	Ca Mg	any other answers	1
(ii)				
	iron / zinc	Fe / Zn	any other answers	1
(iii)	calcium magnesium zinc iron copper M1 for calcium as most reactive M2 for copper as least reactive	Ca Mg Zn Fe Cu		3
(b) (i)	M3 for remainder in correct order hydrogen / H ₂		H	1
(ii)	all the (sulfuric) acid has reacted /all hydrogen (ions) have been replaced (by magnesium (ions)) OR acid has been used up/been neutralised / acid has run out IGNORE the acid is saturated / excess magnesium	sulphuric for sulfuric hydrogen ions / H ⁺ for acid	all the magnesium / reactants used up	1
(iii)	has been added magnesium sulfate (solution) IGNORE incorrect formula	sulphate for sulfate MgSO ₄		1
(iv)	filtration / filter (it / magnesium / solution) / decantation / decant (off the water / solution) IGNORE references to distillation / centrifuging /	description of filtration	sieve crystallisation	1

2 (c) ((i)	exothermic		1
((ii)	magnesium oxide IGNORE incorrect formula	MgO	1

Question number	Expected Answer	Accept	Reject	Marks
3 (a)	M1 precipitate of barium sulfate	sulphate for sulfate insoluble barium sulphate / BaSO ₄	incorrect name of ppt.	1
	M2 no precipitate	no (visible) change solution (formed)		1
	M3 precipitate of calcium sulfate	sulphate for sulfate	incorrect name of ppt.	1
	IGNORE colours	insoluble calcium sulfate / CaSO ₄		
	penalise incorrect extra observations (e.g. effervescence) ONCE only	334.57		
	For M1 and M3 only: if only precipitate appears twice (with no names), penalise missing names once only			
	if only names correct (with no precipitates), penalise omission of precipitate once only			

	Question	_	Expected Answer	Accept	Reject	Marks
3	(b)		aq aq s aq			1
	(c)	(i)	obtain the lead(II) bromide/the residue/the solid	separate the solid and liquid		1
			OR	1		
			remove the liquid/solution/potassium nitrate/water			
		(ii)	to wash away/remove the (remaining) potassium nitrate / lead(II) nitrate / potassium bromide / solution	wash away / remove (remaining soluble) impurities	make the mixture pure	1
			IGNORE clean	to make it pure		
		(iii)	distilled water is pure / does not contain (dissolved) impurities / ions / substances / compounds / other chemicals (that would contaminate the lead(II) bromide) / residue / solid)	reverse argument for tap water	any suggestion that the water / impurities react	1
			IGNORE elements IGNORE references to distilled water being cleaner (ORA)			
		(iv)	to evaporate the water / to dry (the solid/crystals) / increase rate of evaporation (of water)	to avoid decomposition (if heated strongly)	to evaporate the potassium nitrate / solution	1
			IGNORE liquid	3 37	any reference to crystallisation	

Question number	Expected Answer	Accept	Reject	Marks
4 (a)	(increasing) atomic number(s) IGNORE references to electrons / electronic configurations	proton number / number of protons	mass number / RAM	1
(b) (i)	sodium / potassium	Na / K		1
(ii)	fluorine / chlorine / bromine	F / CI / Br / F ₂ / Cl ₂ / Br ₂	fluoride / chloride / bromide	1
(c) (i)	sodium OR potassium	Na / K		
	AND			
	fluorine OR chlorine OR bromine OR hydrogen Answers can be in either order IGNORE incorrect symbols/formulae if names are	F / CI / Br / H / F ₂ / Cl ₂ / Br ₂ / H ₂	fluoride / chloride / bromide / hydride	1
(ii)	correct	O alastrana	Incorrect	1
	M1 Na or K with 8 electrons	0 electrons	electron transfer for M1 and M2	
		H with 2 electrons		1
	M2 F, CI or Br with 8 electrons			
	IGNORE diagrams showing initial electron configurations			1
	M3 (1) + AND (1) - charges correct			
	IGNORE inner shells even if incorrect			

Allow any combination of dots and crosses		
If shown covalently bonded, then max. 1 for correct charges if given		
If the position of 2 electrons shown between the two species makes it hard to be sure that the bonding is definitely ionic (and not covalent), do not award M1 or M2		

Question number	Expected Answer	Expected Answer Accept		Marks
4 (d)	(fluorine reacts) vigorously / instantly / explosively / violently / very quickly / very rapidly IGNORE references to electron transfer, even if incorrect	the quickest / more quickly than chlorine	fluorine reaction slower than chlorine reaction	1
	(to form) iron(III) fluoride	ferric fluoride / FeF ₃		1
(e)	M1 colourless (IGNORE clear)	no colour	decolourised	1
	M2 orange / yellow /brown	any combination of colours on left	any other colour	1
	IGNORE qualifiers such as light / dark			

Question number	Expected Answer	Accept	Reject	Marks
5 (a)	2H ₂ O ₂ → 2H ₂ O + O ₂ M1 all formulae correct (including catalyst if given) M2 correct balancing M2 DEP on M1 If catalyst included in equation, must be MnO ₂ on both sides IGNORE MnO ₂ above the arrow	$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$ multiples		2
(b)	relights a glowing spill IGNORE reference to popping	splint for spill smouldering/embering for glowing		1
(c)	M1 (rate) increases	speeds up / goes faster / decreases time (for decomposition)		1
	M2 provides an alternative pathway / route / mechanism (for the reaction) OR hydrogen peroxide) particles / molecules / reactant(s) adsorb (onto catalyst) M3 with a lower activation energy OR	lowers the activation energy by going a different way = M2 and M3 Absorb / sticks to / bonds to /provides a surface for particles /molecules / reactant(s) to react	gives particles more kinetic energy for M2 and M3 atoms	1
	more particles / molecules have the (required) activation energy OR weakens the (covalent) bonds (in the hydrogen peroxide)	description of activation energy eg particles have enough energy to react	atoms	

	Quest numb		Expected Answer	Accept	Reject	Marks
5	(d)	(i)	M1 curve starting at origin and below original curve			1
			M2 levelling off at 30 cm ³ (+/- 0.5) and anywhere between 30s and 120s	curve reaching right vertical axis below 30cm ³ but still 'going up'		1
		(ii)	M1 curve starting at origin and above original curve			1
			M2 levelling off at 60 cm ³ (+/- 0.5) and before 80s	both curves unlabelled		I
			if curves incorrectly labelled then penalise each curve 1 mark, so max. 2 for the question			

Question number	Expected Answer	Accept	Reject	Ma rks
6 (a)	M1 both protons = 6			1
	M2 C-13 has 7 and C-14 has 8 (neutrons)			1
(b)	same electronic configuration(s) / structure(s) OR		different number of protons	1
	same <u>number</u> of electrons OR	amount for number / six electrons		
	have <u>four/same number of</u> electrons in <u>outer /</u> <u>valence</u> shell			
	IGNORE same number of electrons in inner shells IGNORE references to atomic number / same number of protons / different number of neutrons			
(c) (i)	M1 the average / mean mass of an atom (of the element)	average/mean of: atomic masses / mass numbers / mass of isotopes	mean mass of an element	1
	M2 compared to / relative to (1/12 th) the mass (of an atom) of carbon-12	on a scale where carbon-12 has a mass of 12 / compared with the mass of carbon-12		
	OR	which is 12		
	M1 mass of one mole of atoms		maga of ano made of the	
	M2 compared to (mass of) 1/12 th one mole / 1g of carbon-12		mass of one mole of the element	

Question number			Expected Answer	Accept	Reject	Mar ks
6	С	(ii)	M1 (12 x 98.9) + (13 x 1.1)	(12 x 0.989) + (13 x 0.011) for first 2 marks		1
			M2 ÷ 100	0.011) for first 2 findiks		1
			M3 12.01	12.011 on its own for 2 marks		1
			IGNORE units	marks		
				12.01 on its own for 3		
				marks		

	uestic umbe		Expected Answer	Accept	Reject	Marks
7	(a)	(i)	M1 contains carbon and hydrogen (atoms / elements / particles)	C and H for carbon and hydrogen	ions / carbon molecules / hydrogen molecules / H ₂ / mixture of C and H	1
			M2 only	other equivalent words, eg solely / entirely / completely		1
			M2 DEP on M1, but allow M2 if molecules / ions / mixture used in M1			
		(ii)	C ₁₀ H ₂₂ IGNORE structural formula	H ₂₂ C ₁₀	Reject superscripts / lower case c or h / full	1
	(b)	(i)	addition	additional	size numbers	1
		(ii)	M1 one of the bonds in the double bond breaks	double bond breaks / double bond becomes single bond changes (from unsaturated) to		1
			M2 (many) ethene(s)/molecules/monomers join (together)	saturated		1
			OR			
			(many) <u>ethene(s)/molecules/monomers</u> form a chain			

	uestion umber	Expected Answer	Accept	Reject	Marks
7	(c)	Any 4 from:			
		produces smaller / shorter (chain) molecules			
		smaller / shorter (chain) molecules more useful (as fuels) / have greater demand	ORA low(er) demand products converted to high(er) demand products		
		 smaller / shorter (chain) molecules burn more cleanly /are used to make petrol/diesel/fuel for vehicles 	production of the second of th		
		 crude oil richer in / has a surplus of long (chain) molecules 	ORA		
		produces alkenes / any named alkene			
		 alkenes used to make alcohol / polymers / plastics / chemical feedstock / any named addition polymer 			4

Question number	Expected Answer	Accept	Reject	Marks
8 (a) (i)	diffusion			1
(ii)	ammonia because it moves further (in the same time) / ammonia moved 60cm and hydrogen chloride moved 40cm OR ammonia because (white) ring right of centre / ring is further from ammonia end / closer to HCl end Do not penalise atoms in place of molecules/ particles	reverse arguments ammonia has lower density / has lighter molecules / smaller M_r references to solutions IGNORE smaller molecules		1
(b)	M1 less than 5 mins / less time (for white ring to form)	(forms more) quickly / sooner		1
	M2 particles / molecules have more (kinetic) energy		gas has more energy	1
	M3 and particles/gas move(s) / diffuse faster IGNORE references to rate of reaction / more (successful/frequent) collisions Do not penalise atoms in place of molecules/particles			1

Question number	Expected Answer	Accept	Reject	Marks
8 (c)	particles/molecules collide with air particles/molecules in air OR particles / molecules collide with one another / the wall (of the tube) Do not penalise collisions between ammonia and hydrogen chloride OR particles move in random direction / need many collisions (for white ring) to become visible / many particles of ammonium chloride must form (before white ring seen) Do not penalise atoms in place of molecules/ particles IGNORE references to time taken for evaporation to take place IGNORE references to time taken for reaction to take place			1

Question number	Expected Answer	Accept	Reject	Marks
9 (a)	silicon dioxide is acidic	an acid		1
	calcium oxide is basic / a base	calcium oxide is alkaline / an alkali If neither mark scored, award 1 mark for: reaction is neutralisation OR reaction is between an acid and a base/alkali (even if wrongly identified)		1

Question number	Expected Answer	Accept	Reject	Marks
9 (b) (i)	M1 oxygen (atom)		oxygen molecule / O ₂ / oxide ion	1
	M2 forms two bonds / smaller atom / has valency of 2 IGNORE more (oxygen) in the formula	more of them (n the diagram / structure)	/oxygen ion	1
	M2 DEP on M1, although allow M2 if oxygen mentioned but M1 not awarded because of reference to molecule/ion/O ₂			
(ii)	M1 giant (structure / lattice / atomic) IGNORE large / 3D	giant molecular / macromolecular		1
	M2 covalent			1
	M3 idea that covalent bonds are broken IGNORE bonds are loosened	overcome for broken		1
	M4 covalent bonds are strong / lots of energy required to break covalent bonds/ lots of heat required to break covalent bonds	many bonds are broken = M3 + M4		1
	IGNORE high temperature needed			
	Do not penalise silicone			
	Max2 for mention of ionic or metallic bonding or intermolecular forces			
	Max 3 if discussing diamond / carbon			

Question number	Expected Answer	Accept	Reject	Marks
10 (a) (i)	M1 Na $(1.15 \div 23) = 0.05$ (mol) O $(0.80 \div 16) = 0.05$ (mol) Accept correct alternative working		division by atomic numbers division upside down for M1 and M2	1
	M2 ratio 1:1 M2 DEP on M1	(moles are) the same/equal	TOT WIT UND WE	1
(ii)	M1 $78 \div 39 = 2$	39 x 2 = 78 / 78 is twice 39		1
	M2 Na ₂ O ₂ Final answer scores 2	23x2=46 and 16x2=32 (= 78)		1
(b) (i)	$Na_2O_2 + 2H_2O \rightarrow 2NaOH + H_2O_2$ M1 all formulae correct M2 correct balancing M2 DEP on M1	multiples and fractions equation csq on formula in (a)(ii), but Na and O must be in 1:1 ratio		2
(ii)	Hydroxide / OH ⁻ / HO ⁻ / ⁻ OH			1

	Question number		Expected Answer	Accept	Reject	Marks
10	(b)	(iii)	M1 two electrons between the oxygen atoms			1
			M2 all other electrons correct			1
			M2 DEP on M1			
			Allow any combination of dots and crosses			

Question number		Expected Answer	Accept	Reject	Marks
11 (a)	(i)	potassium / K ⁺	K		1
	(ii)	iron(II) / Fe ²⁺			1
	(iii)	iodide / I [—]	I	iodine / I ₂	1
(b)		M1 use a (clean platinum / nichrome) wire / glass rod / silica rod IGNORE references to hydrochloric acid M2 (to put) solid / solution / M in/over a flame/burner M3 flame as either blue/roaring/non-luminous/Bunsen/blow torch	any method of introducing the solid into the flame, e.g. (wet) wooden spill / spatula / metal rod / tip or sprinkle in	any metal that will burn or melt in a flame (e.g. magnesium) or any metal that will colour the flame (e.g. copper) tongs / tweezers / (deflagrating) spoon	1 1 1
		OR		luminous / yellow flame	
		burner described Bunsen/blow torch			
		no marks if solid is in a container, e.g. test tube/tray/beaker/basin			

Question number	Expected Answer	Accept	Reject	Marks
11 (c) (i)	reacts with / removes carbonate (ions)	formula		1
	OR			
	remove ions/substances/impurities that (form a) precipitate (with silver ions / silver nitrate)	removes ions that give a positive result (with silver ions / silver nitrate)		
(ii)	M1 (hydrochloric acid) contains chloride ions	,	chlorine ions	1
	M2 which interfere with test / make silver chloride OR	gives a (white) precipitate / (false) positive result		1
	M1 forms a (white) precipitate			
	M2 of silver chloride			
	Do not award either mark if wrong chemistry described, eg redox reactions, formation of iodine			
(d)	nitrate / NO ₃ ⁻			1
	If both name and formula given, both must be correct			

Question number	Expected Answer	Accept	Reject	Marks
12 (a)	$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$	Multiples and fractions		2
	M1 all formulae correct M2 correct balancing			
	M2 DEP on M1 IGNORE state symbols			
(b) (i)	Reduced <u>AND</u> oxygen has been removed IGNORE It / PbO gains electrons Do not penalise molecules	arguments based on decrease in oxidation number of Pb/ gain of electrons by Pb ²⁺ / lead ions		1
(ii)	M1 Mr (PbO) = 223	446		1
	(moles method)			1
	M2 n (PbO) = 44.6/223 (=0.2)			1
	M3 mass of $C = 0.2/2 \times 12 = 1.2$			
	(mass ratio method)			
	M2 446 require 12 / 44.6 × 446			
	M3 44. 6 require 1.2 / 1.2			
	Calculations with and without use of 10 ⁶ are acceptable			
	mark csq at each stage			
	Correct final answer with or without working			

scores 3		
Final answers that may score 2 are: 0.6 / 2.4 / 4.8 / 0.12 / 12		

Quest numb		Expected Answer	Accept	Reject	Marks
12 (c)	(i)	(silver is / it is) <u>more</u> soluble in zinc / <u>less</u> soluble in lead	soluble in zinc but insoluble in lead		1
	(ii)	(it is) less than / equal to 530 (°C)		implication that Zn and Ag melting points are both less than or equal to 530 °C	1
	(iii)	M1 zinc/it is lower / silver is higher			1
		M2 zinc turns into a vapour / gas (when heated) while silver remains	boils off (as a gas) first when heated		1
		M2 DEP on M1 IGNORE references to melting point			
	(iv)	silver is expensive / valuable			1

Question number	Expected Answer	Accept	Reject	Marks
13 (a) (i)	4.83 (g)			1
(ii)	3.78 (g)			1
(iii)	M1 $n(ZnSO_4) = 4.83 \div 161 / =0.03$	$(18x \div 161) = (3.78 \div 4.83)$		1
	$M2 n(H_2O) = 3.78 \div 18 / = 0.21$	$x = ((3.78 \div 4.83) \times 161) \div 18$		1
	$M3 \times = n(H_2O) \div n(ZnSO_4) = 7$	= 7		1
	CSQ on (i) and (ii) Do not penalise non-integer values of x	equivalent alternative calculations		
	Correct final answer with no working = 1 Correct final answer with some correct working = 3			
(b)	to remove all the water	to make sure the solid is anhydrous / fully dehydrated		1
	NOT just to remove the water			

Question number	Expected Answer	Accept	Reject	Marks
13 (c)	M1 anhydrous / white copper sulfate	anhydrous cobalt chloride / blue cobalt		1
	IGNORE crystals	chloride (solid or paper)		
		turns pink		1
	M2 turns blue	if oxidation number of cobalt given, must be +2		
	if oxidation number of copper given, must be			
	+2	copper sulfate turns from white to blue = 2		
	M2 DEP on M1 correct or near miss	cobalt chloride turns from blue to pink = 2		
	IGNORE references to determining melting			
	and/or boiling point, even if incorrect	dehydrated in place of anhydrous		
	IGNORE references to acid/base indicators or UI, even if incorrect			

PAPER TOTAL: 120 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code xxxxxxxx Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

