

Mark Scheme (Results)

January 2014

International GCSE Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Edexcel Level 1/Level 2 Certificates Chemistry (KCHO) Paper 1C Science (Double Award) (KSCO) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code UG037642
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.dynamicpapers.com

Question number	Answer	Accept	Reject	Marks
1	M1 dissolve			1
	M2 solution			1
	M3 evaporate			1
	M4 crystals			1
	M5 filter			1
			Total	5

Question number	Answer	Accept	Reject	Marks
2 (a)	X boiling			1
	Y condensing			1
	Z freezing			1
(b)	C The particles move freely.			1
(c) () thermometer			1
(i) it/water boils at 100°C	water does not get hotter than 100°C		1
	OR	than 100 0		
	it/water boils below the melting point of (solid) Q / 140°C / boils before Q melts IGNORE evaporates	reverse argument		
(i	(throughout)	OWTTE	words that imply constant temperature, eg steady	1
	OR			
	to avoid the <u>bottom</u> of the liquid from overheating/the <u>bottom</u> getting hotter than the rest of the liquid/to evenly distribute the heat/to avoid hot spots IGNORE references to increasing movement, etc of particles			
			Total	7

Question number	Expected Answer	Accept	Reject	Marks
3 (a)(i)	nitrogen <u>and</u> oxygen IGNORE formulae whether right or wrong			1
(ii)	argon IGNORE formula whether right or wrong			1
(b)	Any one from: • manufacture of ammonia/in the Haber process • food packaging/preservative • aircraft tyres • (in) light bulbs • coolant/refrigerant/freezing agent • treatment of warts			1
(c)	Any one from:	nitrogen oxide a correct formula	any other gas	1
	formula I GNORE carbon dioxide			

(d) (i)	iron + oxygen (+ water) → (hydrated) iron (III) oxide M1 lhs M2 rhs M1 volume of oxygen = 80 - 63 / 17 (cm³) M2 percentage = (17/80 × 100) / 21 OR M1/80 × 100 correctly evaluated 21 with no working scores 1 78.75/78.8/78.7 with no working scores 1 08/80 × 100 = 79 scores 1	ferric oxide/iron oxide correct chemical equation M1 all formulae correct M2 balanced	any other oxidation state	1 1
(e)	79 with no working scores 0 (whether it/the height / the measurement is) the	no change		1
	same as before IGNORE references to iron had stopped rusting		Total	9

Question number	Answer	Accept	Reject	Marks
4 (a) (i)	the (orange) colouring dissolves in ethanol / does not dissolve in water OR the (orange) colouring is more soluble in ethanol (than water) OR ethanol is a better solvent (than water) IGNORE petals dissolve			1
(ii)	water bath / electric heater / isomantle	description of water bath hot water/steam		1
(iii)	filter / decant / pour off the liquid	use a sieve		1
(b)	M1 2 spots/dots/circles drawn at <u>different</u> heights above the original orange spot <u>and below</u> the solvent front	one spot level with the orange spot		1
	M2 one spot labelled red AND one spot labelled yellow			1
	orange colouring solvent front start end			
			Total	5

Question number	Answer	Accept	Reject	Marks
5 (a)	A - (tap) funnel	burette		1
	B - (conical) flask			1
	C - (gas) jar	measuring cylinder		1
(b)	M1 (limewater) goes milky/chalky/cloudy OR (white) precipitate/solid/suspension (formed) M2 (mixture) goes clear OWTTE (eg cloudiness disappears) IGNORE bubbles	solid dissolves OWTTE colourless solution (formed)	colours other than white	1
(c)	more dense than air/oxygen	poor conductor of electricity	just heavier than air	1
(d)	C weakly acidic			1
			Total	7

Question number	Answer	Accept	Reject	Mark s
6 (a)	M1 C ₆ H ₁₄ M2 58			1
	M3 any value in the range 25 to 45			1
(b)	boiling point/it <u>increases</u> as M _r <u>increases</u>	reverse argument positive correlation as one increases the other increases	directly proportional	1
(c)	different general formulae / OR (general) formula of ethene is not C _n H _{2n+2} / (general) formula of ethane is not C _n H _{2n} OR use of/ mention of displayed formulae to show/indicate double (C to C) bond in ethane	same number of carbon atoms but different number of hydrogen atoms	just different number of hydrogen atoms	1
(d) (i)	H H H H H-C-C-C-C-H M1 H H H H-C-C-C-C-H H-C-C-C-H H-C-C-H H-C-H H-C-H			1
(ii)	penailse one missng H or one missing bond once only accept answers in either order (structural) isomer(s)	isomerism		1

www.dynamicpapers.com

6 (e) (i)	$C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$	further substituted formula structural or displayed formulae		2
	$\mathbf{M1} - C_2H_5Br$			
	M2 – rest of equation correct			
	M2 dep on M1			
	IGNORE state symbols			
(ii)	substitution	bromination/halogenation		1
(iii)	ultraviolet/uv (radiation)	uv light sunlight	light on its own	1
			Total	12

Question number	Answer	Accept	Reject	Mark s
7 (a)	releases thermal energy	releases heat (energy)	just releases energy	1
		produces an increase in temperature		
(b)	D ***			1
(c)	A Z			1
(d)	M1 (consists of) positive <u>AND</u> negative/oppositely charged ions/Mg ²⁺ <u>AND</u> O ²⁻ (ions) IGNORE references to loss and gain of electrons			4
	M2 (strong) attraction between (positive <u>AND</u> negative/ oppositely charged) ions/Mg ²⁺ <u>AND</u> O ²⁻ (ions)	(strong) ionic bonding/(strong) ionic bonds		
	M3 many ions (present in lattice)/giant structure/giant lattice			
	M4 large amount of energy required (to separate the ions/overcome the attraction between the ions)	break the ionic bonding/bonds		
	If mention of covalent bonds/metallic bonds/intermolecular forces only M4 can be awarded			
7 (e)	M1 (name) magnesium chloride			1
	M2 (formula) MgCl ₂	accept a correct formula as a		1
	Penalise inappropriate use of upper or lower case letters or numbers in the wrong place	product in an equation whether the equation correct or not		
			Total	9

Question number	Answer	Accept	Reject	Marks
8 (a)	M1 electronic configuration / 2.1, 2.8.1, 2.8.8.1	electronic structure / arrangement of electrons		1
	M2 same number of electrons in outer shell / one electron in outer shell			1
	OR			
	the number of electrons in the outer shell determines the chemical properties			
(b)	melting point / melting temperature			1
(c) (i) (ii) (iii)	burns with a pop/squeak (when mixed with air and ignited) s I aq g	use burning/lit spill / flame to see if pop/squeak splint for spill capital letters	glowing spill just 'squeaky pop test'	1
	M1 turns blue I GNORE purple			1
	M2 alkaline solution formed/alkali formed/hydroxide ions formed/LiOH is an alkali/LiOH forms hydroxide ions	OH ⁻ for hydroxide ions pH is greater than 7		
	I GNORE references to lithium hydroxide is a metal hydroxide			
	M2 dep on M1 correct or missing			

(ii)	2 (1) (1)	multiples and halves	1
	M2 dep on M1		
	M1 formulaeM2 balancing		
8 (e) (i)	$4Li + O_2 \rightarrow 2Li_2O$ IGNORE state symbols	multiples and halves	2
	 flame (IGNORE colour)/catches fire forms a ball/bead/melts 	comparison between the two, eg only potassium catches fire, they react at different rates	
	Differences – any two from: Potassium: • more vigorous/move around faster/reacts faster/fizzes more/explodes	reverse arguments for lithium	2
	gas/produces hydrogen disappears/dissolves forms a solution	exothermic/gives out heat	
	moves aroundfizzes/effervesces/bubbles/produces	hydroxide react vigorously	
(d)	Similarities - any two from: • floats	forms an alkali/forms a	2

Question	Answer	Accept	Reject	Marks
number		посорт	nojeet .	mar no
9 (a) (i)	M1 & M2- all points correctly plotted to nearest gridline			2
	deduct 1 mark for each incorrectly plotted point			
	posted point			
	M3 smooth curve of best fit drawn			1
	180			

	170			
	160			
	150			
	Time taken			
	in seconds			
	130			
	120			
	120			
	110-			
	10 20 30 40 50 60 70			
	Temperature in °C			
	Temperature III C			
	value from candidate's graph to nearest gridline			
(ii)				
	Penalise incorrect units			1
(iii)	as temperature increases, time (taken) decreases	reverse argument		1
		pogotivo correlation		
	IGNORE references to rate and inverse proportionality	negative correlation		
L	The state of the s	1	ı	1

Question number	Answer	Accept	Reject	Marks
9 (b)	M1 (average kinetic) energy of particles/ions increases	particles move faster	molecules/atoms (but once only)	1
		sufficient energy to react		1
	M2 more collisions/particles/ions have energy ≥ activation			1
	energy			·
	M3 more (successful) collisions <u>per second</u> / more <u>frequent</u> (successful) collisions			
	IGNORE references to chance of collisions			
	Penalise reference to molecules once only			
(c)	(same) concentration (of each solution)	(same) volume (of each solution)		1
		(same) amount of (each) solution		
		rate of mixing		
			Total	9

Question number	Answer	Accept	Reject	Marks
10 (a)	initial final changes 16 17 (+)1 16 19 (+)3 16 21 (+)5 M1 & M2 all 6 temperature readings correct deduct one mark for each incorrect value M3 all 3 temperature changes correct Mark M3 csq on temperature readings			2
(b)	M1 (the smaller the chips the) larger the (total) surface areaM2 more (thermal) energy (is transferred to the water)	heat for thermal energy faster reaction reverse argument for experiment 1		1
(c)	 M1 (it would be) lower M2 larger volume of liquid/more liquid to heat up (with same amount of thermal energy transferred) M2 dep on M1 	water or acid in place of liquid		1
			Total	7

Question number	Answer	Accept	Reject	Marks
11 (a)	oxidised <u>AND</u> gain of oxygen IGNORE reference to loss of electrons	increase in oxidation number	gain of electrons	1
(b)	M1 it/magnesium is more reactive than titanium	reverse argument		1
	M2 it/magnesium has displaced titanium	replaced		1
	M2 dep on M1			
(c)	it/magnesium chloride has a different/lower boiling point IGNORE references to melting point	more volatile reverse argument		1
(d)	M1 (aircraft engines) – high strength-to-weight ratio M2 (hip replacements) – non-toxic	high m.pt / corrosion resistant high strength-to-weight ratio / corrosion resistant	not corrosive	1 1 1
	M3 (propellers) – corrosion resistant NO USE CAN BE GIVEN TWICE			
			Total	7


Question number	Answer	Accept	Reject	Marks
12 (a) (i)	M1 24			1
	M2 0.004(0)			1
(ii)	M1 25(.0)×0.4(00) 1000			
	M2 0.01(00)	an answer of 10(.0) for 1 mark (i.e. failing to divide by 1000)		
(b)	M1 0.004 mol of Mg react with 0.008 mol of HCl OR 0.01 is greater than 0.008 / M2 from (a)(ii) is greater than 2 x M2 from (a)(i) M2 HCl is in excess	Mg and HCl react in a 1:2 ratio (by moles)		1
	M2 dep on M1 Mark csq on answers in (a)(i) and (a)(ii)			
			Total	6

Question number	Answer	Accept	Reject	Marks
13 (a)	M1 air	atmosphere		1
	M2 natural gas / water/ hydrocarbons	steam		1
(b)	M1 (temperature) 400 to 500°C	methane 623 to 823 K		1
	M2 (pressure) 150 to 250 atmospheres	atm / bar		1
	Units required, but allow one mark for both numbers correct with units missing			
	M3 (catalyst) iron / Fe			1
	IGNORE references to promoters such as iron oxide			
(c)	nitric acid / nitric(V) acid		all other oxidation states	1
(d)	M1 $n(NH_3) = \frac{25(0) \times 0.3(00)}{1000} / 7.5 \times 10^{-3} \text{ (mol)}$	other suitable methods, e.g. use of $V_1M_1 = V_2M_2$		1
	M2 $n(\text{HNO}_3) = \frac{25(0) \times 0.3(00)}{1000} / 7.5 \times 10^{-3} \text{ (mol)}$	22		1
	M3 $conc.(HNO_3) = 0.5(00) \text{ (mol/dm}^3)$			1
	OR M2 ×1000 correctly evaluated			
	Mark csq throughout			
	correct answer with no working scores 3			
			Total	9

Question number	Answer	Accept	Reject	Marks
14 (a)	Any two from:			2
	M1 both forward and backwards reactions are occurring			
	M2 amounts/concentrations of reactants and products stay the same/pressure (of gas mixture) stays the same	masses for amounts	are the same	
	M3 rate of forward reaction = rate of backwards reaction			
(b) (i)	M1 increase			1
	M2 (forward) reaction is exothermic/gives out heat	reverse reaction is	equilibrium	1
	M2 dep on M1	endothermic	shifts to left	
	IGNORE references to le Chatelier's principle and to reaction tries to decrease the temperature/equilibrium shifts to right			
(b) (ii)	M1 increase			1
	M2 fewer moles/molecules (of gas) on right (hand side)	more molecules on left (hand side)	equilibrium	1
	M2 dep on M1	Tort (Harla slae)	shifts to left	
	IGNORE references to le Chatelier's principle and to reaction tries to decrease the pressure/equilibrium shifts to right			

(c) (i)	$2CH_3OH + O_2 \rightarrow 2H_2CO + 2H_2O$	multiples and halves		2
	M1 formulae			
	M2 balancing			
	M2 dep on M1			
	IGNORE catalyst if on both sides or above arrow			
	IGNORE state symbols			
(ii)	M1 – a substance that increases the rate of a reaction	mass does not		1
	IGNORE alters the rate and any reference to enzymes	change		·
	M2 and is chemically unchanged (at the end of the reaction)	without being used up		1
	IGNORE references to takes no part in the reaction			
(iii)	M1 provides an alternative reaction path(way)/route/mechanism			1
	M2 (alternative path has a) lower activation energy [Activation energy can be described, e.g. the minimum energy needed (by colliding particles) for reaction to occur]	M1 molecules adsorb on/stick to the catalyst		1
	MAX 1 if any mention of particles gaining energy	M2 weakens the bonds in the reactant molecules		
(d)	$2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$	multiples and halves		2
	M1 all formulae correct	correct equation for		
	M2 balanced	methanal for one mark		
	M2 dep on M1	IIIaik		
	IGNORE state symbols			
			Total	14

www.dynamicpapers.com

