

# Mark Scheme (Results)

June 2011

GCE Physics (6PH02) Paper 01 Physics at Work



Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: <a href="http://www.edexcel.com/Aboutus/contact-us/">http://www.edexcel.com/Aboutus/contact-us/</a>

Alternatively, you can contact our GCE Science Advisor directly by sending an email to <u>ScienceSubjectAdvisor@EdexcelExperts.co.uk</u>. You can also telephone 0844 576 0037 to speak to a member of our subject advisor team.

June 2011 Publications Code US028545 All the material in this publication is copyright © Edexcel Ltd 2011

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### Physics Specific Marking Guidance Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

Horizontal force of hinge on table top

66.3 (N) or 66 (N) and correct indication of direction [no ue]

[Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some

examples illustrating acceptable boundaries.

#### Mark scheme format

• Bold lower case will be used for emphasis.

• Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".

• Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

## Unit error penalties

• A separate mark is not usually given for a unit but a missing or incorrect unit will normally cause the final calculation mark to be lost.

• Incorrect use of case e.g. 'Watt' or 'w' will not be penalised.

• There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given.

• The same missing or incorrect unit will not be penalised more than once within one question but may be penalised again in another question.

• Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.

• The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].

#### Significant figures

• Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.

• Use of an inappropriate number of significant figures will normally be penalised in the practical examinations or coursework.

• Using  $g = 10 \text{ m s}^{-2}$  will be penalised.

#### Calculations

• Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.

• Rounding errors will not be penalised.

• If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.

• use of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.

• recall of the correct formula will be awarded when the formula is seen or implied by substitution.

• The mark scheme will show a correctly worked answer for illustration only.

#### Quality of Written Communication

- Indicated by QoWC in mark scheme. QWC Work must be clear and organised in a logical manner using technical wording where appropriate.
- Usually it is part of a max mark, the final mark not being awarded unless the QoWC condition has been satisfied.

# www.dynamicpapers.com

| Question | Answer | Mark |
|----------|--------|------|
| Number   |        |      |
| 1        | A      | 1    |
| 2        | D      | 1    |
| 3        | С      | 1    |
| 4        | A      | 1    |
| 5        | A      | 1    |
| 6        | A      | 1    |
| 7        | В      | 1    |
| 8        | С      | 1    |
| 9        | A      | 1    |
| 10       | В      | 1    |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mark |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 11(a)    | Use of $Q = It$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|          | Q = 450  C / A s (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|          | $\frac{\text{Example of calculation}}{Q = 15000 \text{ A} \times 30 \times 10^{-2} \text{ s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|          | Q = 450  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 11(b)    | Use of $R = \rho l/A$ (1)<br>Length of conductor = 24 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|          | Length of conductor = 24 (m) (1)<br>Height of statue = length $-1$ m = 23 m (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|          | Assumption: ANY ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|          | Included height of plinth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|          | Conductor/wire doesn't early on in ground (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|          | Example of calculation<br>, RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|          | $l = \frac{1}{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|          | $l = \frac{2.7 \times 10^{-3} \Omega \times 1.5 \times 10^{-4} \mathrm{m}^2}{1.7 \times 10^{-8} \Omega \mathrm{m}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|          | $l = 23.8 \text{ m}^{-1.7 \times 10^{-12} \text{ m}^{-1.7$ |      |
|          | 11 - 1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 2 + 2 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|          | Height of statue = $23.8 - 1 = 22.8 \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 11(c)    | ANY ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|          | The idea that the lightning is attracted to /strikes/hits the conductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|          | OR Lightning takes shortest path (from cloud) /strikes highest point (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|          | <b>OR</b> Action of points (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|          | Total for question 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7    |

| Question  | Answer                                                                                         | Mark |
|-----------|------------------------------------------------------------------------------------------------|------|
| Number    |                                                                                                |      |
| 12(a)(i)  | Use of $v = f\lambda$ with $v = 3.00 \times 10^8 (ms^{-1})$ (1)                                |      |
|           | $f = 4.57 \times 10^{14} \text{ Hz} \text{ (allow s}^{-1}\text{)}$ (1)                         | 2    |
|           |                                                                                                | _    |
|           |                                                                                                |      |
|           | example of calculation                                                                         |      |
|           | $r_{-3} \times 10^8 \text{ m s}^{-1}$                                                          |      |
|           | $I = \frac{1}{6.56 \times 10^{-7}}$ , m                                                        |      |
|           | $f = 4.57 \times 10^{14} Hz$                                                                   |      |
| 12(a)(ii) | Correct use of $1(eV) = 1.6 \times 10^{-19}$ (J) to convert eV to J or J to eV                 |      |
|           | $e = \frac{3.03 \times 10^{-19}}{10} = 1.9 \ (eV)$                                             |      |
|           | $\begin{array}{c} \text{(1)} \\ 1.6 \times 10^{-19} \end{array} = 1.7 \text{(CV)} \end{array}$ |      |
|           |                                                                                                |      |
|           | (1)                                                                                            | 2    |
|           | Transition <b>from</b> (-)1.5 (eV) <b>to</b> (-)3.4 (eV)                                       | 2    |
|           |                                                                                                |      |
| 12(b)     | Wavelength increased or stretched /frequency decreased/red shift/ Doppler (1)                  |      |
|           | effect                                                                                         |      |
|           | Galaxy is moving away (from us/sun) (1)                                                        | 2    |
|           |                                                                                                |      |
|           | Total for question 12                                                                          | 6    |

| Question<br>Number | Answer                                                                     | Mark |
|--------------------|----------------------------------------------------------------------------|------|
| 13(a)              | Use of $P = VI$ (1)                                                        |      |
|                    | $Current = 0.021 A \tag{1}$                                                | 2    |
|                    |                                                                            |      |
|                    | Example of calculation                                                     |      |
|                    | $I = \frac{r}{V} = \frac{4.0}{230} = 0.021 \text{ A}$                      |      |
| 13(b)(i)           | Use of $P = VI$ to justify (numbers or symbols) (1)                        | 1    |
|                    |                                                                            |      |
|                    | Examples                                                                   |      |
|                    | P = VI, so $W = VA$                                                        |      |
|                    | $Or V = JC^{-1}, A = C s^{-1} so V A = J C^{-1} x C s^{-1} = J s^{-1} = W$ |      |
|                    | <b>Or</b> $5 \text{ V} \times 0.1 \text{ A} = 0.5 \text{ W}$ (1)           |      |
| 13(b)(II)          | $Efficiency = \frac{0.5}{4.8} (\times 100) \tag{1}$                        | •    |
|                    | Efficiency = $10\%$ or 0.1 (1)                                             | 2    |
|                    |                                                                            |      |
|                    | Example of calculation                                                     |      |
|                    | Efficiency = $\frac{0.5}{4.8} \times 100$                                  |      |
|                    | Efficiency = $10.42 \%$                                                    |      |
| 13(b)(iii)         | Energy/power converted/wasted/transferred/lost to thermal or heat          |      |
|                    | (energy)                                                                   |      |
|                    | Or                                                                         |      |
|                    | Energy/power lost due to resistance (1)                                    | 1    |
|                    | (allow internal resistance)                                                |      |
|                    |                                                                            |      |
|                    | Total for question 13                                                      | 6    |

| Question   | Answer                                                                                                                                                                                                                                                                                                | Mark |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Number     |                                                                                                                                                                                                                                                                                                       |      |
| 14(a)      | Transverse         Vibration/oscillation/displacement is perpendicular to direction of         wave/energy travel       (1)         (allow propagation or wave velocity for wave travel)         Longitudinal         Vibration/assillation/displacement is perpendicular to direction of wave/energy |      |
|            | (1) travel<br>(allow in the same direction for parallel)<br>Marks can be scored from a clearly labelled diagrams                                                                                                                                                                                      | 2    |
| 14(b)(i)   | (Pulse) longitudinal (1)                                                                                                                                                                                                                                                                              |      |
|            | Hammer moves horizontally OR parallel to (length of) rod<br>Or                                                                                                                                                                                                                                        |      |
|            | Hammer causes compressions in rod (1)                                                                                                                                                                                                                                                                 | 2    |
| 14(b)(ii)  | Use of speed = distance/time(1)Use of either $2.4 \times 10^{-4}$ s <b>OR</b> $2.4$ m(1)Speed = 5000 m s <sup>-1</sup> (1)(2500 ( m s <sup>-1</sup> ) scores max 1/3 for use of v=d/t)(1)(do not credit method using $v=f\lambda$ )                                                                   | 3    |
|            | Examples of calculation<br>Speed $= \frac{2.4 \text{ m}}{4.8 \times 10^{-4} \text{ s}}$ or $\frac{1.2 \text{ m}}{2.4 \times 10^{-4} \text{ s}} = 5000 \text{ m s}^{-1}$                                                                                                                               |      |
| 14(b)(iii) | Vibration/oscillation of (atoms/molecules/particles in) rod/metal (1)                                                                                                                                                                                                                                 | 1    |
| 14(c)      | Max 3                                                                                                                                                                                                                                                                                                 |      |
|            | • Idea of reflection (in rod) <b>OR</b> two waves travelling in opposite directions (1)                                                                                                                                                                                                               |      |
|            | • Waves have same frequency /wavelength (1)                                                                                                                                                                                                                                                           |      |
|            | • Superposition (do not credit superimposition) (1)                                                                                                                                                                                                                                                   |      |
|            | • Nodes and antinodes produced. (1)                                                                                                                                                                                                                                                                   |      |
|            | (marks can be scored from a labelled diagram)                                                                                                                                                                                                                                                         |      |
|            |                                                                                                                                                                                                                                                                                                       | 3    |
|            | Total for question 14                                                                                                                                                                                                                                                                                 | 11   |

# www.dynamicpapers.com

| Question   | Answer                                                                              |     | Mark |
|------------|-------------------------------------------------------------------------------------|-----|------|
| Number     |                                                                                     | (1) |      |
| 15(a)(I)   | Ammeter and voltmeter both correct                                                  | (1) | 1    |
| 15(a)(ii)  | Z at the bottom of the potential divider                                            | (1) | 1    |
|            |                                                                                     |     | _    |
|            |                                                                                     |     |      |
|            |                                                                                     |     |      |
|            | from $2$ or $4$ down to $2$ eg $4$                                                  |     |      |
| 15(b)(i)   | Current =0.75 (A) (range 0.74 A – 0.76 A)                                           | (1) |      |
|            | Use of $V = IR$                                                                     | (1) |      |
|            | Resistance = $13-14 \Omega$                                                         | (1) |      |
|            |                                                                                     |     |      |
|            | (incorrect current e.g. use of tangent, scores 1 max for use of $V = IR$ )          |     |      |
|            |                                                                                     |     |      |
|            | Example of calculation                                                              |     |      |
|            | $\frac{V}{R} = \frac{V}{V} = \frac{10 \text{ V}}{13 \text{ A}} = 13 \text{ A}$      |     |      |
|            | I 0.75 A                                                                            |     | 2    |
|            |                                                                                     |     | 3    |
| *15(b)(ii) | (OWC- Work must be clear and organised in a logical manner using                    |     |      |
| 13(5)(1)   | technical wording where appropriate.)                                               |     |      |
|            |                                                                                     |     |      |
|            | Max 3                                                                               |     |      |
|            | Initially or until about 4 V. Let V/Ohmie conductor                                 | (1) |      |
|            | (Increasing the) current causes heating effect /temperature rise                    | (1) |      |
|            | Resistance increases OR increases lattice/ion/atoms vibrations                      | (1) |      |
|            | Rate of increase of current (with potential difference) decreases                   | (1) | •    |
| 15(2)(;)   | Deading surrent values at $AV$ of both 0.2 (A) and 0.5 (A)                          | (1) | 3    |
| 15(0)(1)   | (nower of 10 error allowed eg. $3(A)$ and $5(A)$ seen)                              | (1) |      |
|            | Current = $0.8 \text{ A}$                                                           | (1) | 2    |
|            |                                                                                     | (-) | ~    |
|            | (allowing for $\pm 0.1$ mm square tolerance, accept range 0.76A to 0.84A)           |     |      |
|            |                                                                                     |     |      |
| 15(c)(ii)  | p.d. across $R = 8 V$                                                               | (1) |      |
|            | $\mathbf{p} = \mathbf{8V}$ to $\mathbf{q}$                                          |     |      |
|            | $R = \frac{1}{0.8 \text{ A}} = 10 \Omega$                                           | (1) | 2    |
|            | (allow ecf from part (c)(i) for the value of $I$ substituted)                       | (1) | 2    |
|            | (accept answers in range 9.52 $\Omega$ to 10.53 $\Omega$ using range for <i>I</i> ) |     |      |
| 15(C)(III) | Resistance of P greater than resistance of narallel combination                     | (1) |      |
|            | P will have a greater (share of the) nd <b>OR</b> R will have a lower (share of     | (1) |      |
|            | the ) pd                                                                            | (1) |      |
|            | Reading on voltmeter will increase                                                  | (1) | 3    |
|            |                                                                                     |     | -    |
|            |                                                                                     |     |      |
|            | Total for question 15                                                               |     | 15   |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 16(a)(i)           | Greater refraction at the first face(1)Greater refraction at the second face(1)(accept new incident ray if parallel)                                                                                                                                                                                                                                                                                                                                                                | 2    |
| 16(a)(ii)          | Displacement/it increases with concentration (1)<br>At increasing rate <b>OR</b> not linearly (1)                                                                                                                                                                                                                                                                                                                                                                                   | 2    |
| 16(a)(iii)         | Evidence that curved line has been drawn(1)Concentration 74 % - 76% (dependent mark)(1)                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
| 16(a)(iv)          | Distance (between prism and screen) affects displacement/Displacement would increase if the screen is moved away/Displacement would decrease if screen moved nearer(1)                                                                                                                                                                                                                                                                                                              | 1    |
| 16(b)(i)           | Polarised light is when the oscillations / vibrations (associated with the wave) are in one plane only       (1)         Plane includes direction of travel (of the wave).       (1)         OR       (1)         Polarised light is when the oscillations / vibrations (associated with the wave) in one direction only,       (1)         (oscillations / vibrations are) perpendicular to the direction of travel (of the wave).       (1)                                       | 2    |
| *16(b)(ii)         | (QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)         Max 4         • Mention of polarising filter/Polaroid/polariser       (1)         • Rotation (of filter) until minimum/ maximum intensity (not rotation of solution)       (1)         • (Rotation) done with and without the sugar solution       (1)         • identifies correct difference in angles       (1)         • use of protractor/polarimeter       (1) | 4    |
|                    | Total for question 16                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13   |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| *17(a)             | (QWC- Work must be clear and organised in a logical manner using<br>technical wording where appropriate.)Max 4• Mention of photons <b>OR</b> photoelectric (NOT photoelectrons)• Idea of one to one relationship from photon to electron• Intensity of light relates to number of photons/sec• wavelength/frequency is constant• photon energy depends on frequency /reference to $E=hf$ • Reference to $hf = \Phi + \frac{1}{2}mv_{max}^2$ and $\Phi$ constant | 4    |
| 17(b)(i)           | $Use of E=hf E = 3.90 \times 10^{-19} (J) $ (1)                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                    | Or calculate the minimum frequency for all elements (1)                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                    | Caesium and potassium [independent mark] (1)                                                                                                                                                                                                                                                                                                                                                                                                                    | 3    |
| 17(b)(ii)          | Max 3                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|                    | Refers to equation $E \text{ or } 1/2\text{mv}^2 = \text{h}f - \Phi$ (1)<br>[Do not accept $\text{hf} = \Phi + 1/2\text{mv}^2$ , equation must be correctly rearranged]                                                                                                                                                                                                                                                                                         |      |
|                    | Gradient (1)<br>(All parallel) because gradient = h                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                    | Intercept(1)(-) $\Phi$ is intercept on the energy axis /y axis(1) $\mathbf{OR} f_0$ / threshold frequency/ minimum frequency required to release an<br>electron for the metal is the intercept on the frequency axis $\mathbf{OR} \Phi$ /h is the intercept on the frequency axis                                                                                                                                                                               |      |
|                    | potassium will have the smallest $\Phi$<br>OR zinc has the greatest $\Phi$ (1)                                                                                                                                                                                                                                                                                                                                                                                  | 3    |
| 17(b)<br>(iii)     | Zinc requires higher frequency /Zinc requires UV/UV dangerous (for<br>students)/UV ionising/Can't get UV filters(1)(Do not allow converse argument about Caesium for this mark)                                                                                                                                                                                                                                                                                 |      |
|                    | Caesium works with visible light (1)                                                                                                                                                                                                                                                                                                                                                                                                                            | 2    |
|                    | Total for question 17                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12   |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code US028545 June 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





