

Mark Scheme (Results)

June 2011

GCE Chemistry (6CH01) Paper 01 The Core Principles of Chemistry Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our GCE Science Advisor directly by sending an email to ScienceSubjectAdvisor@EdexcelExperts.co.uk.

You can also telephone 0844 576 0037 to speak to a member of our subject advisor team.

June 2011
Publications Code US027559
All the material in this publication is copyright
© Edexcel Ltd 2011

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.
 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question	Correct Answer	Mark
Number		
1 (a)	C	1
Question	Correct Answer	Mark
Number	Correct Allswei	Mark
1 (b)	В	1
Question Number	Correct Answer	Mark
1 (c)	D	1
Question Number	Correct Answer	Mark
1 (d)	В	1
•		
Question Number	Correct Answer	Mark
2	A	1
		1
Question Number	Correct Answer	Mark
3	С	1
Question Number	Correct Answer	Mark
4	С	1
	T	
Question Number	Correct Answer	Mark
5	В	1
Question Number	Correct Answer	Mark
6	D	1
Question Number	Correct Answer	Mark
7	A	1
Question Number	Correct Answer	Mark
8	С	1
Question Number	Correct Answer	Mark
9	С	1
	•	

Question Number	Correct Answer	Mark
10	В	1
10		
Owestian	Commont Anguin	Moule
Question Number	Correct Answer	Mark
11	A	1
11	A	1
Question	Correct Answer	Mark
Question Number	Correct Allswer	Mark
12	D	1
12		1
Question	Correct Answer	Mark
Number	Correct Allswei	Mark
13 (a)	A	1
15 (a)		-
Question	Correct Answer	Mark
Number		
13 (b)	D	1
Question	Correct Answer	Mark
Number		
13 (c)	В	1
Question	Correct Answer	Mark
Number		
14	C	1
	·	,
Question	Correct Answer	Mark
Number		
15	В	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
16 (a)	First mark The energy (allow enthalpy / heat) required (allow change) per mole (1)	Energy / enthalpy produced	3
	Second mark to form (gaseous) singly charged positive ions Or to remove (1 mole of) electrons (1)		
	Third mark from gaseous atoms (of the element) (1) X(g) X ⁺ (g) + e ⁽⁻⁾ scores last 2 marks	Just gaseous element	
	Ignore standard conditions Per mole scores at any point		

Question Number	Acceptable Answers	Reject	Mark
16 (b)	Nuclear charge / effective nuclear charge / number of protons / atomic number increases (1)	charge density	3
	Two of		
	(Outer) electrons in the same (quantum) shell / same number of electron shells (1)	orbitals, sub- shell	
	Shielding (of nucleus)(about) the same (1)		
	Distance from nucleus/atomic radius less (1)		

Question Number	Acceptable Answers	Reject	Mark
16 (c)	Route 1 Electrons (in the p sub-shell) are paired (for the first time) (in S) / two electrons occupy the same (p) orbital / full orbital / electrons-in- boxes diagram (1)		2
	repulsion between the (paired) electrons (reduces IE) (1)		
	Route 2 P has a half-filled p sub-shell / half-filled p orbitals which is stable (1)		
	(on ionization) S gains a half-filled p sub-shell / half-filled p orbitals (1)		

Question Number	Acceptable Answers	Reject	Mark
16 (d)	200 – 490 (kJ mol ⁻¹)	Negative values	1

Question Number	Acceptable Answers	Reject	Mark
17 (a)	Do not penalize the use of A_r (Mg) = 24.3 at any stage in this question. Penalize SF errors (1 SF, incorrect SF (eg. 0.02) and incorrect rounding to 2 SF (e.g. 0.016)) only once in parts (a – d) Allow 0.0166 Allow fractions (e.g. 1/60)		1
	Amount Mg = $(0.4 \div 24) = 0.016666$ = 0.0167 (mol) Allow Amount Mg = $(0.4 \div 24.3) =$ 0.016461 = 0.0165 (mol)		

Question Number	Acceptable Answers	Reject	Mark
17 (b)	Amount HCl = 1.5 x 22.2/1000 = 0.033333 = 0.0333 (mol) Allow Amount HCl = 2 x answer in (a)		1

Question Number	Acceptable Answers	Reject	Mark
` -	Amount of $H_2 = 400 \div 24\ 000 = 0.016666 = 0.0167\ (mol)$		1

Question Number	Acceptable Answers	Reject	Mark
17 (d)	Ratio mol Mg:HCl:H ₂ = 0.0167 (0.165): 0.0333: 0.0167 = 1:2:1 Allow answers in which the mole	Just stating the molar ratio	1
	ratios of the reactant and products are compared separately		

Question Number	Acceptable Answers	Reject	Mark
17 (e)	$M_r (MgCl_2) = 24 + 2 \times 35.5 = 95 (1)$		3
	Mol MgCl ₂ = (mol Mg) = 0.0166666 (or 0.0167) (1)		
	Mass $MgCl_2 = 95 \times 0.0166666 = 1.58$ (g) 3 sf (1)		
	Or 95 x 0.0167 = 1.59 (g) 3sf Or 95.3 x 0.0166666 = 1.59 Or 95 x 0.0165 = 1.58 Or 95.3 x 0.0165 = 1.57		
	Correct answer with no working scores (3)		
	TE on 17(a)		

Question Number	Acceptable Answers	Reject	Mark
18 (a) (i)	Product in box: CuSO ₄ (<u>aq</u>) (1) Either		3
	Littler		
	Mark the arrows and then the labels: Two downward arrows (1) labelled with symbols or values with or without units (1)		
	OR		
	Mark each arrow and label separately Downward arrow & ΔH_1 or value (1)		
	Downward arrow & ΔH ₂ or value (1)		
	Allow reversed arrows \boldsymbol{with} reversed signs on ΔH		
	Ignore any other labels on the arrows.		
	Ignore 5H₂O in bottom product		
	$CuSO_{4.}5H_{2}O(s) \xrightarrow{\triangle H_{reaction}} CuSO_{4}(s) + 5H_{2}O(l)$		
	$\triangle H_1 / +11.5$ $\triangle H_2 / -66.1$		
	CuSO ₄ (aq)		

Question Number	Acceptable Answers	Reject	Mark
18 (a)(ii)	Award higher mark from:		2
	Route 1		
	Mark the calculation based on		
	their cycle TE from (a)(i) ignoring		
	incorrect bottom product		
	Route 2		
	Mark a calculation which is		
	independent of the cycle		
	$\triangle H_{\text{reaction}} = \triangle H_1 - \triangle H_2 \text{ stated or}$		
	implied (66.1) (1)		
	= +11.5 - (-66.1) (1)		
	= $(+)$ 77.6 (kJ mol ⁻¹) (1)		
	Correct answer alone scores (2)		
	-77.6 (kJ mol ⁻¹) alone or from a		
	correct addition scores (1)		

Question Number	Acceptable Answers	Reject	Mark
18 (b)	Dehydration reaction cannot be controlled OR temperature change (of dehydration reaction) cannot be measured	Temperature of solid / crystals cannot be measured	1
	OR CuSO ₄ .5H ₂ O would need heating (so temperature change cannot be measured)		
	OR impossible to add exact amount of water (to obtain value by reverse process)		
	OR cannot mix solid with water to obtain perfect crystals		

Question Number	Acceptable Answers	Reject	Mark
*18 (c)(i)	First & second marks stand alone		4
	 Pipette/burette / measuring cylinder / balance to transfer (a known amount of) (water) (1) 	Just mass / volume measured	
	 to (expanded) polystyrene cup / calorimeter / any insulated container allow coffee / plastic cup (1) 		
	Third & fourth marks only awarded if correct chemicals and procedure used		
	add solid and stir (allow mix or shake) mixture (1)		
	4. measure initial and final temperature	increase unless exothermic	
	shake) mixture (1) 4. measure initial and final		

Question Number	Acceptable Answers	Reject	Mark
18 (c)(ii)	 Any three from: heat transfer (from surroundings) (allow loss or gain) approximation in (specific) heat capacity of solution neglecting (specific) heat capacity of calorimeter/apparatus (allow energy absorbed by the apparatus) reaction / dissolving may be incomplete/slow temperature change is very small (and difficult to measure) Density of solution is taken as the same as water conditions not standard (allow) 	Errors in calculation including adding mass of solid to mass of water loss of reagents / water incomplete combustion Just 'difficult to measure'	3

Question Number	Acceptable Answers	Reject	Mark
19	C_nH_{2n+2} or any symbol in place of n		1
(a)(i)			
	Ignore C ₅ H ₁₂		

Question Number	Acceptable Answers	Reject	Mark
19 (a)(ii)	(structural / chain) isomers		1

Question Number	Acceptable Answers	Reject	Mark
19 (a)(iii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Structures in which any bonds or atoms are omitted Structures with CH ₃ groups	1

Question Number	Acceptable Answers	Reject	Mark
19 (a)(iv)	2,2-dimethylpropane (1)		1
	Allow dimethylpropane, 2-dimethylpropane 2,2 dimethylpropane, 2 dimethylpropane		
	Ignore hyphens, commas, spaces		

Question	Acceptable Answers	Reject	Mark
Number			
19	$CH_4 + 1\frac{1}{2}O_2 \rightarrow CO + 2H_2O$		2
(b)(i)	Formulae (1) balance (1)		
	Or multiples		
	Ignore state symbols		
	No TE on any other species		

Question Number	Acceptable Answers	Reject	Mark
19 (b)(ii)	Insufficient / not excess oxygen / air	Reactant does not react completely with oxygen Just 'methane in excess'	1

Question		Reject	Mark
Number	Acceptable Answers		
19 (b)(iii)	Any two from CO is toxic / poisonous (allow harmful) (1)	Explosive	2
	Less energy is produced (allow (methane) becomes a less efficient fuel) (1)	Reactants wasted	
	Unburned hydrocarbons react to form compounds which are toxic / harmful (1)	Air pollution	
	Allow sooty deposits / carbon / particulates in atmosphere (ignore reference to global dimming) (1)		
	Unburned hydrocarbons are toxic / harmful (1)		
	If reference to damage to ozone layer, global warming and / or acid rain then max (1)		

Question Number	Acceptable Answers	Reject	Mark
*19 (b)(iv)	Global warming / climate change (1)		3
	Due to (increase in concentration of) CO_2 in the atmosphere / CO_2 is a greenhouse gas (1)	(heat) from the sun	
	Traps the heat from the earth / IR radiation (re-radiating) from the earth (1) If reference to damage to ozone layer then max (2)	Global dimming due to complete	
	Photochemical smog is formed (0) NO_x is produced (by reaction of nitrogen & oxygen) (1) and reacts with (volatile) organic compounds in sunlight (1)	combustion of hydrocarbon fuels Effects (e.g. reactions of unburned	
	Ignore references to increase in (of concentration) of H_2O in the atmosphere	hydrocarbons) due to <i>incomplete</i> combustion	
	Ignore references to the effects of climate change		

Question Number	Acceptable Answers	Reject	Mark
19 (c)(i)	The arrows show the movement of electrons (1)		2
	Single-headed/I denotes 1 electron and Double-headed/II denotes a pair of / 2 electrons /allow lone pair (1)	Just stating homolytic and heterolytic fission	
	Allow Explanations just in terms of electron movement in bond fission		

Question Number	Acceptable Answers	Reject	Mark
19 (c)(ii)	Equation (1) two arrows correctly showing a homolytic fission (1) Here and in subsequent mechanisms the covalent bonds may be shown as lines or electron pairs or both The mechanism arrows may be shown on the same side or on different sides of the bond The single electrons need not be shown		2

Question Number	Acceptable Answers	Reject	Mark
19 (c)(iii)	$CH_4 + Cl \rightarrow CH_3 + HCl (1)$ $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl (1)$		2
	Ignore state symbols and curly arrows. Ignore order of equations so these marks may be scored if an initiation step with fission of C – H bond in methane is given in c(ii)		

Question Number	Acceptable Answers	Reject	Mark
19 (c)(iv)	Because a (chlorine) radical is regenerated / reformed / reproduced / recycled (by the propagation reactions each time a molecule of product is formed) (1) Allow methyl radical regenerated if initiation step with fission of C – H bond in methane is given in c(ii) and propagation order reversed Ignore references to chain reaction	radical is regenerated by UV light (chlorine) radical is a catalyst	1

Question Number	Acceptable Answers	Reject	Mark
19 (c)(v)	$CH_3^{\bullet} + CH_3^{\bullet} \rightarrow C_2H_6 / 2CH_3^{\bullet} \rightarrow C_2H_6$ Ignore state symbols The single electrons need not be		1
	shown		

Question Number	Acceptable Answers	Reject	Mark
19 (d)	UV light does not have enough energy to (ALLOW 'cannot') break the C-H bond (1) So no H free radicals / atoms are formed (therefore cannot combine to form H ₂) (1)	Just 'hydrogen' Just 'so no H ₂ formed	2

Question Number	Acceptable Answers	Reject	Mark
20 (a)	(i) Structure Lattice /close-packed (1) (or a diagram with at least 3 rows)	layers protons 'free' electrons	4
	positive ions or cations (allow metal ions) (1)		
	delocalized electrons / sea of electrons (1)		
	(ii) Bonding (Electrostatic) attraction between positive ions / cations (allow metal ions) and delocalized electrons / sea of electrons (1)		

Question Number	Acceptable Answers	Reject	Mark
20 (b)	Any three from		3
	 Magnesium ion / Mg²⁺ (allow magnesium) has a larger charge (density) than the sodium ion (allow sodium) / Na⁺ some comparison of the ions is required (1) 	Just Mg ²⁺ and Na ⁺	
	2. magnesium ions / Mg ²⁺ smaller than sodium ions (1)		
	 Magnesium / Mg²⁺ contributes two / more electrons (per atom) to the "sea" of electrons (1) 		
	 magnesium ions / Mg²⁺ have greater attraction for the delocalized "sea" of electrons (1) 	More bonds	
	Ignore reference to number of outer electrons in Mg / Na Any references to the bonding being ionic, covalent or intermolecular (max 2)		
	Reverse argument can gain full marks		

Question Number	Acceptable Answers	Reject	Mark
20 (c)	The delocalized electrons / sea of electrons (1)	`free' electrons	2
	Flow (allow move / free to move) (1) (When a potential difference/voltage is applied)		
	'Carry the current' is not sufficient for the mark		

TOTAL FOR SECTION B = 60 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code US027559 June 2011

For more information on Edexcel qualifications, please visit $\underline{www.edexcel.com/quals}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

