

Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE Mathematics A (4MA0) Higher Paper 3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018 Publications Code 4MA0_3H_1801_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- \circ cao correct answer only
- \circ ft follow through
- \circ isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- \circ dep-dependent
- \circ indep-independent
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme. If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Internatio	al GCSE Maths			
Question	Working	Answer	Mark	Notes
1 (a	1 400 000 \div 125 000 oe or 14 \div 125 000 or 14 \times 1000 \times 100 (=1 400 000) or	11.2	2	M1 for a first step; can be implied by an answer with digits 112
	$125\ 000 \div 1000 \div 100(=1.25)$	25.000		A1
	$(4.8 \times 1000 \times 100) \div 19.2$ oe or $4.8 \div (19.2 \div 1000 \div 100)$ oe	25 000	2	A1 for division by 19.2; can be implied by an answer with digits 25
2 (a		2.2587(80006)	2	 M1 for 11.245 or 2.204 or 5.102087 or 2.2587 rounded or truncated to 2 or more decimal places A1
(b		2.3	1	B1ft ft from (a) as long as from at least 3sf
3 (a	$(-7)^2 + 7 \times 5$ or $-7 \times -7 + 7 \times 5$ oe or 49	84	2	M1 for correct substitution or correct evaluation of $(-7)^2$ NB: accept 7(5) in place of 7×5 A1
(b	$100 = 11^{2} + 7q$ oe or $A - p^{2} = 7q$ $100 = 11^{2} + 7q$ oe or $-7 = 11^{2} - 100$ oe		3	M1 for correct substitution or rearrangementM1 isolating 7q in a correct equation
		-3		A1 cao

Question	Working	Answer	Mark	Notes
4 (a)	$(80+1) \div 2(=40.5(\text{th}))$ or $80 \div 2(=40(\text{th}))$	4	2	M1 or listing numbers and attempt to find medianA1
(b)	1×5, 2×12, 3×16, 4×32, 5×15 or 5, 24, 48, 128, 75 or 280	3.5 oe	3	M1 for at least 4 correct products – may be seen by side of table (products may not be evaluated);
	"280"÷80			M1 dep Allow division by their $\sum f$ provided addition or total under column seen
				A1 condone rounding to 4 if 3.5 or 280 ÷ 80 is present
(c)	$\frac{32}{80} + \frac{12}{80}$ or $\frac{32+12}{80}$	$\frac{44}{80}$	2	M1 or for $\frac{44}{n}$ where $n > 44$ or $\frac{m}{80}$ where $m < 80$
				A1 for $\frac{44}{80}$ oe or 0.55 or 55%
5 (a)	$3-6y=2y-7$ or $1-2y=\frac{2y}{3}-\frac{7}{3}$	1.25 oe	3	M1 for multiplying out brackets in a correct equation or dividing all terms by 3
	e.g. -6y-2y=-7-3 or $3+7=2y+6y$ or			M1 for isolating the terms in y ft from $3-2y=2y-7$ or $1-6y=2y-7$
	-8y = -10 or $8y = 10$			A1 dep on M1 awarded

Question	Working	Answer	Mark	Notes
5 (b)		$-3 < x \leq 4$	2	B2 also accept $x > -3$ and $x \le 4$ or $4 \ge x > -3$ If not B2 then award B1for a double-ended inequality which is correct at one end (ignore the other end) eg. $-3 < x < 4$, $-3 \le x \le 4$, $-3 < x > 4$ or for an answer of $x > -3$ oe or $x \le 4$ oe or the wrong variable in an otherwise correct inequality eg. $-3 < y \le 4$ SC : Award B1 for $-3 \le x < 4$
(c)	e.g. $2m \ge 8-13$	$m \ge -2.5$ oe	2	M1 for isolating terms in m (in an equation or inequality) e.g. $2m \ge -5$ or -2.5 oe A1 must be an inequality

Question	Working	Answer	Mark	Notes
6 (a)	$(QR^2 =)10.6^2 - 5.9^2 (= 77.55)$	0.01	3	M1 for squaring and subtracting.
	$(QR =)\sqrt{10.6^2 - 5.9^2}$ or $\sqrt{77.55}$	8.81		M1 dep
				A1 for 8.806 – 8.81
(b)	E.g. $\sin R = \frac{5.9}{10.6}$ or $\cos R = \frac{'8.81'}{10.6}$ or $\tan R = \frac{5.9}{10.6}$	33.8	3	M1 correct trig statement for angle <i>PRQ</i> or for angle <i>QPR</i>
	$\operatorname{E.g.} \sin^{-1} \left(\frac{5.9}{10.6} \right) \operatorname{or} \cos^{-1} \left(\frac{'8.81'}{10.6} \right) \operatorname{or} \tan^{-1} \left(\frac{5.9}{'8.81'} \right)$			M1 complete method to find angle <i>PRQ</i>
				A1 for 33.8 – 33.82125
(c)		12.45	1	B1 12.45 or 12.449

Question	Working	Answer	Mark		Notes
7	(-2, 11)(-1, 8)(0, 5)(1, 2) (2, -1)(3, -4)	Correct line between x = -2 and $x = 3$	3	B3	for a correct line between x = -2 and $x = 3If not B3 then award B2 fora correct line through at least 3 of(-2, 11) (-1, 8) (0, 5) (1, 2) (2, -1) (3, -4)OR for all of(-2, 11) (-1, 8) (0, 5) (1, 2) (2, -1) (3, -4)$ plotted, not joined If not B2 then award B1 for for at least 2 correct points stated or calculated (may be in a table) OR for a line with a gradient of -3 OR for a line drawn with a negative gradient through (0, 5) NB: No mark should be awarded for a line through (0, 5) and $(3, 0)$
8	arc centre <i>B</i> cutting <i>BA</i> and <i>BC</i> at (say) <i>P</i> and <i>Q</i> ANI arcs centres <i>P</i> and <i>Q</i> of equal radii which intersect at (<i>R</i> must fall within guidelines) bisector drawn with all necessary arcs) R	2	M1 A1	dep SC: B1 for bisector within guidelines with no arcs

Question	Working	Answer	Mark	Notes
9	4x + 28 + x - 13 = 180	18	4	M1 for a correct equation in x
	<i>x</i> = 33			A1 for the correct value of x
	360 ÷ ("33" – 13) oe			M1 (dep on M1) for a correct calculation to find n ft "33"
				A1
10	m = -4 or	y = -4x + 11	3	M1 for recognising gradient = -4
	$2y + 8x = k \ (k \neq 5)$	·		e.g. an answer of $y = -4x + c$ with $c \neq 2.5$
	$3 = -4 \times 2 + c$ or			M1 (indep) for correct method to find <i>c</i> using their
	y-3 = -4''(x-2) or			gradient or
	c = 11			$2 \times 3 + 8 \times 2 = k$
				A1 oe eg $y - 3 = -4 \times (x - 2)$, $2y + 8x = 22$ NB L = $-4x + 11$ oe scores M1 M1 A0

Question	Working	Answer	Mark		Notes		
11	$eg \frac{23}{100} \times 330$ oe (=75.9)	151	3	M1	for $\frac{23}{100} \times 330$ oe or 75.9	M2 for 330×0.77^3 or 330×0.77^4 (=116.00))	
	$\frac{23}{100} \times (330 - ``75.9'') \ (= 58.443)$ $\frac{23}{100} \times (330 - ``75.9'' - ``58.443'') \ (= 45.00)$			M1	for a complete method (condone 4 years rather than 3)	If not M2 then award M1 for 330×0.77 (=254.1(0)) or 330×0.77^2 (=195.65(7))	
	330 - "75.9" - "58.443" - "45.00"			A1	accept $(1 - 0.23)$ as equivale for 150.6 - 151 SC If no other marks gained, aw or 330 \times 0.31 oe (=102.3) or	ent to 0.77 throughout vard B1 for 330×0.69 oe (=227.7)	
12	e.g. $\frac{4(x+4)}{12} + \frac{3(2x+3)}{12} (=7)$ OR $\frac{4(x+4) + 3(2x+3)}{12} (=7)$ OR $4(x+4) + 3(2x+3) = 7 \times 3 \times 4$ e.g. $4x + 16 + 6x + 9 = 7 \times 12$ OR $10x + 25 = 7 \times 12$	5.9 oe	3	M1 M1 A1	for dealing with fractions e.g. express LHS as the sum 12 or a multiple of 12 (if bra or express LHS as a single frac multiple of 12 (if brackets en multiplying both sides by 12 (if brackets expanded, conder for dealing with fraction(s) a (condone 1 error in expansion dep on M1 gained	of 2 fractions with denominator of ackets expanded, condone 1 error) etion with denominator of 12 or a expanded, condone 1 error) or 2 or a multiple of 12 one 1 error)) and expanding brackets on of brackets)	

Question	Working	Answer	Mark	Notes
13 (a) (b)	$(3.57 \times 10^7) \div (1.35 \times 10^4) (= 2644(.44))$ or 35700000 ÷ 13500 oe	$35\ 700\ 000$ $2.6 imes 10^3$	1 2	 B1 M1 or for 2600 - 2644.4 A1 must be in standard form and
				in the range $2.6 \times 10^3 - 2.64 \times 10^3$
14	11 – 3	8	2	M1 for identifying 3 and 11 as LQ and UQ may be circled in listA1
15	E.g. $AOC = 360 - 2 \times 90 - 76$ (=104) or AOC = 180 - 76 (=104) oe "104" ÷ 2	52	3	M1 for a method to find angle AOCM1 (dep) for complete method to find angle ABCA1

Question	Working	Answer	Mark		Notes
16	eg $100x = 34.545$ and $x = 0.345$ 100x - x = 34.545 - 0.345	Shown by an algebraic method	2	M1	for two decimals that, when subtracted will leave a non-recurring value, and intention to subtract (must show recurring dots or at least 2 of 54 or 45)
	Alternative scheme			A1	must see a correct fraction prior to $\frac{19}{55}$ or division must be clearly shown
	eg $10x = 0.45$ $1000x = 45.45$ 1000x - 10x = 45.45 - 0.45			M1	for two decimals that, when subtracted will leave a non-recurring value, and intention to subtract
	990x = 45 $\mathbf{x} = \frac{45}{990}$ $0.3\dot{45} = \frac{3}{10} + \frac{45}{990}$	Shown by an algebraic method		A1	for a complete method
17	$x^{2} = \frac{2b-a}{7-am}$ $x^{2} (7-am) = 2b-a$		4	M1 M1	for squaring both sides for multiplying by $7 - am$ in a correct equation allow $x^2 \times 7 - am = 2b - a$ $7 - am \times x^2 = 2b - a$
	$7x^2 - 2b = amx^2 - a$ or $a - amx^2 = 2b - 7x^2$	$a = -\frac{7x^2 - 2b}{mx^2 - 1}$ oe		M1 A1	for isolating terms in <i>a</i> in a correct equation or for $a = \frac{2b - 7x^2}{1 - mx^2}$
					be with <i>a</i> as the subject

Questi	ion	Working	Answer	Mark	Notes
18 (a)	l)	$\frac{7}{\sqrt{132}} = \frac{h}{\sqrt{297}} \text{ oe or } 7 \times \frac{\sqrt{297}}{\sqrt{132}} \text{ oe or } 7 \div \frac{\sqrt{132}}{\sqrt{297}}$ oe	10.5 oe	2	M1 for a correct linear scale factor $ \frac{\sqrt{297}}{\sqrt{132}} \xrightarrow[\text{oe or}]{} \frac{\sqrt{132}}{\sqrt{297}} \xrightarrow[\text{oe}]{} \sqrt{297} $ A1
(b))	e.g. 567 ÷ $\left(\frac{3}{2} \right)^3$ or 567 × $\left(\frac{2}{3} \right)^3$	168	2	M1 for a fully correct method NB: scale factor may not be simplified and could be ft from (a) dep on M1 scored in (a) A1
19 (a)	l)	33 ÷ 10 (=3.3) , 39 ÷ 15 (=2.6), 36 ÷ 20 (=1.8),12 ÷ 15 (=0.8)		3	M1 for use of area e.g. correct method for any 2 frequency densities or any 2 correct bars of different widths
		fd 3.3, 2.6, 1.8, 0.8			M1 for at least 3 correct fd or at least 3 correct bars
			A fully correct histogram		A1 for a correct histogram, with a linear scale on fd axis or a key
(b))	0.75 × 36 + 12 (=39)		2	M1 for a fully correct method to find number of people who travelled more than 30 km
			$\frac{39}{120}$		A1 for $\frac{39}{120}$ oe e.g. 0.325, 32.5%
		Alternative method E.g. " 3.3 " \times 2 + " 2.6 " \times 3 + " 1.8 " \times 4 + " 0.8 " \times 3 (= 24) and	$\frac{39}{120}$		M1 dep on at least M1 in (a) ft from their graph using area
		" 1.8 " × 3 + " 0.8 " × 3 (= 7.8)			A1 for $\frac{37}{120}$ oe e.g. 0.325, 32.5%

Question	Working	Answer	Mark	Notes
20 (a)	$\sqrt{25\times2} + \sqrt{64\times2} - \sqrt{100\times2}$	3	2	M1 for at least 2 out of 3 correct products from those
	or $5\sqrt{2} + 8\sqrt{2} - 10\sqrt{2}$			shown or for $3\sqrt{2}$
	or $3\sqrt{2}$			
	01 5 1 2			A1
(b)	F σ	1.1 –	2	M1 \sqrt{a} for multiplying numerator and denominator
	$5\sqrt{a} + a \sqrt{a} = 5\sqrt{a} = a$	$\frac{1}{2} + \frac{1}{10}\sqrt{a}$		by \sqrt{a} (a) is a set of \sqrt{a} (b) so that the set of \sqrt{a} (b) is the set of \sqrt{a} (b) is the set of \sqrt{a} (c) is
	$\frac{3\sqrt{a}+a}{10\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} \text{ or } \frac{3\sqrt{a}}{10\sqrt{a}} + \frac{a}{10\sqrt{a}} \text{ or }$			by \sqrt{a} (or a multiple of \sqrt{a}) or splitting
	$[\Box \nabla a \nabla a = \Box \Box$			fraction into 2 parts or
	$\frac{\sqrt{a}(5+\sqrt{a})}{\sqrt{a}\sqrt{b}}$			taking out \sqrt{a} as a common factor
	$10\sqrt{a}$			
				A1 from correct working NP individual fractions need not be in their
				simplest form
21	((10a-b)+(2a-5b))((10a-b)-(2a-5b))	24(2a-b)(2a+b)	3	M1 first stage in using difference of 2 squares
	Or $(10a - b+2a-5b)(10a - b - 2a+5b)$		5	allow $-2a - 5b$ in place of $-(2a - 5b)$
	(12a-6b)(8a+4b)			M1 simplifying 2 correct brackets
				A 1 fully factorized annuacion from connect morting
	Alternative	24(2a-b)(2a+b)	3	A1 Turry factorised expression from correct working
	$(100a^2 - 10ab - 10ab + b^2)$ or		5	M1 expanding one bracket correctly
	$4a^2 - 10ab - 10ab + 25b^2$ or			
	$-4a^2 + 10ab + 10ab - 25b^2$			
	0.6 - 2 - 2.412			M1 simplifying 2 something in a
	$90a^{-} - 24b^{-}$			simplifying 2 correct expansions
				A1 fully factorised expression from correct working

Question	Working	Answer	Mark	Notes
22	$\sqrt[5]{\frac{32}{3125}} \left(=\frac{2}{5} \operatorname{oe}\right)$	$\frac{240}{3125}$	3	M1 a correct method to find probability of getting one head
	$\left(\left(\left(\frac{2}{5}\right)^{4} \times \left(1 - \left(\frac{2}{5}\right)^{4} \right) \right) \right) = \left(\frac{48}{3125} \right) = \left(\frac{48}{3125} \right)$			M1 (dep) for the probability of getting one combination of 4 heads and 1 tail
				A1 oe eg $\frac{48}{625}$, 0.0768
23 (a)	$(f(-4) =) \frac{3 \times -4}{-4 - 2} (= 2)$ or	1.6	2	M1 A1 oe
	$\left(\operatorname{gf}(x)=\right)\frac{4\left(\frac{3x}{x-2}\right)}{5}$ or $\frac{4\left(\frac{3\times-4}{-4-2}\right)}{5}$			
(b)	$\frac{3 \times \frac{4x}{5}}{\frac{4x}{5} - 2}$	$\frac{6x}{2x-5}$	3	M1 for a correct first expression for $fg(x)$
	E.g. $\frac{12x}{4x-10}$ oe			M1 for a correct unsimplified fraction of the form $\frac{ax}{bx-c}$ where
				<i>a</i> , <i>b</i> and <i>c</i> are integers A1 cao
				SC : Award B2 for $\frac{3x}{x-2.5}$

Question	Working	Answer	Mark	Notes
(c)	$y = \frac{3x}{x-2}$ y(x-2) = 3x xy-3x = 2y or x(y-3) = 2y $x = \frac{3y}{y-2}$ x(y-2) = 3y xy-3y = 2x or $y(x-3)= 2x$	$\frac{2x}{x-3}$	3	M1 for writing function in the form $y = \frac{3x}{x-2}$ or $x = \frac{3y}{y-2}$ and multiplying both sides by the denominator M1 isolating terms in x (or y)
				A1 oe must be in terms of x
24	$\overrightarrow{BX} = \frac{3}{2} \times 4\mathbf{a} = (6\mathbf{a}) \text{ or}$ $\overrightarrow{CX} = \frac{5}{2} \times 4\mathbf{a} = (10\mathbf{a}) \text{ or}$ $\overrightarrow{AX} = \frac{3}{2} \times 4\mathbf{a} + 3\mathbf{c} = (6\mathbf{a} + 3\mathbf{c}) \text{ or}$ $\overrightarrow{OY} = \overrightarrow{OC} + \overrightarrow{CY} \text{ or } \overrightarrow{OY} = \overrightarrow{OC} + 2\overrightarrow{AX}$	9 c + 12 a	3	M1 correct vector, in terms of a and/or c for \overrightarrow{BX} or \overrightarrow{CX} or \overrightarrow{AX} (need not be simplified) or $\overrightarrow{OY} = \overrightarrow{OC} + \overrightarrow{CY}$ or $\overrightarrow{OY} = \overrightarrow{OC} + 2\overrightarrow{AX}$ (accept 3 c in place of \overrightarrow{OC} and their \overrightarrow{CY} and their \overrightarrow{AX} if
	$\overrightarrow{CY}(\operatorname{or} 2\overrightarrow{AX}) = 2(-4\mathbf{a} + 3\mathbf{c} + 4\mathbf{a} + 6\mathbf{a}) (= 6\mathbf{c} + 12\mathbf{a})$			 clearly stated in terms of a and c) M1 correct vector for CY(or 2AX) (need not be simplified) implies the award of both method marks A1 for 9c + 12a or 3(3c + 4a)

Question	Working	Answer	Mark	Notes	
25	e.g. angle $AOB = 360 \div 5$ (=72) or angle $ABC = 108$	63.1	5	M1 for correct use of angles in a pentagon	
	or angle $OBC = 54$ or angle $COM = 36$ e.g. $AO = \frac{4}{\cos(54)}$ (= 6.8(05)) oe			M1 for a method to find AO (or BO etc) or OM	
	$OM = 4 \tan(54) (= 5.5(055))$ oe e.g. $\tan APO = \frac{"6.8"}{10}$ (angle $APO = 34(.2)$			M1 for a method to find angle <i>APO</i> or angle <i>OPM</i> OR	
	e.g. $\tan OPM = \frac{"5.5"}{10}$ (angle $OPM = 28.8$ or 29)			for a method to find angle <i>PAO</i> (55.8) AND angle <i>PMO</i> (61.1)	
	"34.2" + "28.8" OR 180 - "55.8" - "61.1"			M1 for a complete method	
				A1 for answer in the range $62.9 - 63.2$	
	Alternative e.g. angle $AOB = 360 \div 5$ (=72) or angle $ABC = 108$ or angle $OBC = 54$ or angle $COM = 36$	63.1	5	M1 for correct use of angles in a pentagon	
	e.g. $AO = \frac{4}{\cos(54)}$ (= 6.8(05)) oe			M1 f for a method to find AO (or BO etc) or OM	
	$OM = 4 \tan(54) (= 5.5(055))$ oe e.g. $AP = \sqrt{10^2 + 6.8^2}$ AND $MP =$			M1 for a method to find <i>AP</i> (or <i>BP</i> etc) AND <i>MP</i>	
	$\sqrt{10^{2} + 5.5.^{2}}$ $(= 12.(09) \qquad (= 11.(415))$ $\cos APM = \frac{12.09^{2} + 11.415^{2} - 12.31^{2}}{2 \times 12.09 \times 11.415}$			M1 for a complete method	
				A1 for answer in the range $62.9 - 63.2$	