Mark Scheme Summer 2009

IGCSE

IGCSE Mathematics (4400)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 441204770
696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2009
Publications Code UG021472
All the material in this publication is copyright
© Edexcel Ltd 2009

Except for questions* where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method. [* Questions 5(b), 11(a), 13(a), 15(d), 20 and 21]

Trial and improvement methods for solving equations score no marks, even if they lead to a correct solution.

Q	Working	Answer	Mark	Notes		
1 a	$80 \times \frac{2}{5}, 2 \times \frac{80}{5}$		2	M1	Also award for 80 : 32 or $32: 80$	
		32		A1	cao	
b	$3+1$ or 4		2	M1	Also award for 60: 20 or $20: 60$	
		20		A1	cao	
						Total 4 marks

2	40×13.25 or $\frac{40}{60} \times 795$ oe		3	M2	for 40×13.25 oe or $\frac{40}{60} \times 795$ oe
			M1 for $\frac{40}{60} \times(13 \times 60+15)$ or for $40 \times$ time eg 40×13.15 or 526 seen or 40×795 or $40 \times 13 . \ldots$		
		530		A1	cao

3	correct enlargement vertices $(10,10)(15,10)(15,20)$	3	B3	B2 for translation of correct shape or 2 vertices correct or for enlargement $11 / 2$, centre $(0,0)$ B1 for one side correct length Allow $1 / 2$ square tolerance for both vertices and lengths of sides of triangle

4	Examples of complete, correct explanations (i) 10×0.35 or 3.5 seen (may be in $\frac{3.5}{10}$) AND can't have half beads or there must be a whole number of (red) beads (ii) $3 \frac{1}{2}$ red beads is impossible (iii) $\frac{7}{20}$ AND there are (only) 10 beads or you need 20 beads (iv) The probability of any bead/ a red bead must be tenths or must have 1 decimal place (v) Gives at least two examples that the probability of taking a red bead is $\frac{n}{10}$ where $2 \leq n \leq 9 e . g$. states 0.3 and 0.4	2	B2	for a complete, correct explanation B1 for a partially correct explanation Examples of partially correct explanations (i) $\frac{1}{10}$ or 0.1 seen (ii) Gives one example that the probability of taking a red bead is $\frac{n}{10}$ where $2 \leq n \leq 9$ (iii) There would be 3.5 red beads. (iv) You can't have half beads (v) $10 \times 0.35=3.5$ (vi) $0.35=\frac{7}{20}$ Treat statements like ‘Don't know the number of red beads' as irrelevant.
				Total 2 marks

5 a		$p(p+7)$	2	B2	Also accept $(p+0)(p+7)$ for B2 B1 for factors which, when expanded and simplified, give two terms, one of which is correct. SC B1 for $p(p+7 p)$
b	$5 x=2$ or $-5 x=-2$		3	M2	$\begin{aligned} & \text { for } 5 x=2 \text { or }-5 x=-2 \text { or } \frac{5 x}{5}=\frac{2}{5} \\ & \text { M1 for } 4=5 x+2 \\ & \text { or } 5 x=4-2 \\ & \text { or }-5 x=2-4 \\ & \text { or } 5 x-2=0 \end{aligned}$
		$\frac{2}{5} \text { or } 0.4$		A1	for 4 correct B1 for 2 correct
c		t^{9}	1	B1	cao
d	$12 y+15-10 y-15$		2	M1	for 3 correct terms inc correct signs or for $12 y+15-(10 y+15)$
		2 y		A1	Accept $2 \mathrm{y}+0$
					Total 8 marks

6 a	$\frac{266}{760}$ or 0.35		2	M1	
		35		A1	cao
b	$\frac{204}{0.3}$ or $\frac{204}{30}$ or 6.8 or $\frac{204}{3}$ or 68		2	M1	
		680		A1	cao

7	\sin		3	M1	for sin	or M1 for cos and $\frac{\sqrt{" 49.45 "}}{7.9} \text { following correct }$ Pythagoras and A1 for 0.8901... or M1 for tan and $\frac{3.6}{\sqrt{49.45 "}}$ following correct Pythagoras and A1 for 0.5119...
	$\frac{3.6}{7.9}$ or $0.4556 \ldots$			A1	for $\frac{3.6}{7.9}$ oe or 0.4556...	
		27.1		A1	for answer rounding to 27.1	
						Total 3 marks

8 a	13927	2	B2	-B1 for eeoo or any repetition	
b	Yes and gives an explanation which either refers specifically to the members of A and their properties eg All the factors of 27 are odd. None of the factors of 27 are even. $2,4,6,8$ aren't factors of 27. or gives a general explanation which shows understanding of the statement eg A and C have no members in common. The intersection of A and C is empty.	1	B1	for 'Yes' and an acceptable explanation Do not accept an explanation which merely lists, without comment, the members of both sets. Do not accept an explanation which includes the symbol \cap with no indication of its meaning.	
c		2	B2	$B 1$ for $B \subset A$ $B 1$ for $A \cap C=\varnothing$ and $B \cap C=\varnothing$ Ignore any individual members shown on the diagram. Mark the layout which must be labelled	
					Total 5 marks

9	$4.7^{2}+5.9^{2}$ $=22.09+34.81=56.9$		4	M1	for squaring \& adding
	$\sqrt{4.7^{2}+5.9^{2}}$			M1	(dep) for square root
	$7.5432 \ldots$	2.84	A1	for value which rounds to 7.54	
			A1	for answer which rounds to 2.84 $(2.84320 .)$.	

10 a	$\begin{aligned} & 10 \times 8+30 \times 24+50 \times 5+70 \times 2+90 \times 1 \\ & \text { or } 80+720+250+140+90 \text { or } 1280 \end{aligned}$		4	M1	for finding at least three products $f \times x$ consistently within intervals (inc end points) and summing them	
			M1	(dep) for use of halfway values		
	$\frac{" 1280 "}{40}$				M1	(dep on 1st M1) for division by 40 or division by their $8+24+5+2+1$
		32		A1	cao	
b	d $=25$ indicated on graph		2	M1		
		12 or13		A1	Accept $12-13 \mathrm{inc}$	
C	10 and 30 or $10 \frac{1}{4}$ and $30 \frac{3}{4}$ indicated on cumulative frequency axis or stated		2	M1		
		14-17 inc		A1		

11 a	$\begin{aligned} & 10 x-15 y=45 \\ & 10 x+8 y=22 \end{aligned}$	$\begin{aligned} & 8 x-12 y=36 \\ & 15 x+12 y=33 \end{aligned}$		4	M1	for coefficients of x or y the same followed by correct operation or for correct rearrangement of one equation followed by substitution in the other eg $5 x+4\left(\frac{2 x-9}{3}\right)=11$ For both approaches, condone one arithmetical error
	$y=-1$	$x=3$			A1	cao dep on M1
					M1	(dep on 1st M1) for substituting for other variable
			$3-1$		A1	cao dep on all preceding marks
b			3, -1	1	B1	ft from (a)
						Total

12 a		1.5×10^{8}	2	M1	for $1.5 \times 10^{\mathrm{m}}$
				A1	if $\mathrm{m}=8$
b		7.2×10^{-1}	2	M1	for $7.2 \times 10^{\mathrm{n}}$ or 0.72 oe with digits 72 eg 72×10^{-2}
				A1	if $\mathrm{n}=-1$

13 b	$\begin{aligned} & A=2 L W+2 W H+2 H L \\ & \text { or } \frac{A}{2}=L W+W H+H L \end{aligned}$			4	M1	for a correct equation following expansion or division by 2 May be implied by second M1	
	$\begin{aligned} & A-2 H L=2 L W+2 W H \\ & \text { or } \frac{A}{2}-H L=L W+W H \end{aligned}$				M1	for correct equation with W terms isolated	
	$\begin{aligned} & A-2 H L=2 W(L+H) \\ & \text { or } A-2 H L=W(2 L+2 H) \\ & \text { or } \frac{A}{2}-H L=W(L+H) \end{aligned}$				M1	for correct equation with W as a factor	
		$\frac{\mathrm{A}-2 \mathrm{HL}}{2(\mathrm{~L}+\mathrm{H})}$	$\frac{A-2 H L}{2 L+2 H} \text { or } \frac{\frac{A}{2}-H L}{L+H} \text { oe }$		A1		
							Total 7 marks

14 ai	47	2	B1	cao	
ii	alternate angles		B1	Award this mark if 'alternate' appears	
b	124	1	B1	cao	
ci	47	2	B1	cao	
ii	angle between a chord and a tangent =angle in the alternate segment		B1	Accept 'alternate segment'	
					Total 5 marks

16 a	$\pi \times 4^{2}+\pi \times 4 \times 9$		2	M1	
		163		A1	$\begin{aligned} & \text { for ans rounding to } 163 \\ & (\pi \rightarrow 163.3628 \ldots 3.14 \rightarrow 163.28 \\ & 3.142 \rightarrow 163.384) \\ & \hline \end{aligned}$
b	$\frac{6}{4}$ or 1.5 oe or $6: 4$ oe or $\frac{4}{6}$ oe or $4: 6$ oe		2	M1	May be implied by 13.5 or 12.09... Also award for cube of any correct values or cube of correct ratios
		3.375 oe		A1	for 3.375 or $3 \frac{3}{8}$ or $\frac{27}{8}$ oe Accept 3.38 if M1 scored Do not award A1 if slant heights used as h in $v=\frac{1}{3} \pi r^{2} h$
					Total 4

18	(5x-1)(x+3)		4		for factorising numerator as ($5 x-1$) $(x+3)$	
	$\begin{gathered} \hline 2\left(25 x^{2}-1\right) \\ \frac{(5 x-1)(x+3)}{2(5 x+1)(5 x-1)} \end{gathered}$			B1 B1	for factorising denominator as $2\left(25 x^{2}-1\right)$ for factorising $25 x^{2}-1$ as $(5 x+1)(5 x-1)$	or B2 for factorising denominator as $(5 x-1)(10 x+2)$ or $(5 x+1)(10 x-2)$
		$\frac{x+3}{2(5 x+1)} \text { or } \frac{x+3}{10 x+2}$		B1		
					Total 4 marks	

19	$\begin{aligned} & 2 \times 6 \sin 39^{\circ} \\ & \text { or } 2 \times 6 \cos 51^{\circ} \\ & \text { or } 6^{2}+6^{2}-2 \times 6 \times 6 \cos 78^{\circ} \\ & \text { or } \frac{6 \sin 78^{\circ}}{\sin 51^{\circ}} \end{aligned}$		6	M1	
	7.551...			A1	for answer rounding to 7.55
	$\text { eg } \frac{78}{360} \times \pi \times 12$			M1	for $\frac{78}{360}$ oe inc $0.2166 \ldots$ rounded or truncated to at least 3 decimal places or for $\frac{360}{78}$ oe inc $4.6153 \ldots$ rounded or truncated to at least 3 decimal places
				M1	$\begin{aligned} & \text { for } \pi \times 12 \text { or for } 2 \pi \times 6 \\ & (\pi \rightarrow 37.699 \ldots 3.14 \rightarrow 37.683 .142 \rightarrow 37.704) \end{aligned}$
	$8.16-8.17$ inc oe inc $\frac{13 \pi}{5}, 2.6 \pi$ oe			A1	for 8.17 or better ($\pi \rightarrow 8.168 \ldots$ $3.14 \rightarrow 8.164 \quad 3.142 \rightarrow 8.1692$)
		15.7		A1	for ans rounding to 15.7 ($\pi \rightarrow 15.7199 \ldots 3.14 \rightarrow 15.7158 \ldots$ 3.142 \rightarrow 15.7202..)
					Total 6 marks

20	225 seen		3	B1	
	$\sqrt{225}$ or 15			B1	Award B1 for 15 only if 225 seen
		60		B1	cao Award only if preceding 2 marks scored

21	$\begin{aligned} & (x+4)^{2}=x^{2}+(x+6)^{2}-2 x(x+6) \cos 60^{\circ} \\ & \text { or } \cos 60^{\circ}=\frac{(x+6)^{2}+x^{2}-(x+4)^{2}}{2 x(x+6)} \end{aligned}$		5	M1		
	$x^{2}+4 x+4 x+16$ or $x^{2}+8 x+16$ and $x^{2}+6 x+6 x+36$ or $x^{2}+12 x+36$			B1	dep on M1 for correct expansion of $(x+4)^{2}$ and $(x+6)^{2}$ in correct statement of Cosine Rule	Omitted brackets may be implied by correct subsequent working.
	$x^{2}+8 x+16=x^{2}+x^{2}+12 x+36-x^{2}-6 x$ or $x^{2}+6 x=x^{2}+12 x+36+x^{2}-x^{2}-8 x-16$ oe			B1	for correctly dealing with $\cos 60^{\circ}$ and obtaining a correct equation with no fractions and no brackets	
	$2 \mathrm{x}=20$ oe			B1	for correct linear equation e.g. $2 x=20$ $-2 x=-20,4 x=40,2 x-20=0$	
		10		A1	cao dep on all preceding marks	
						Total 10 marks

Further copies of this publication are available from Edexcel UK Regional Offices at www.edexcel. org.uk/ sfc/ feschools/ regional/ or International Regional Offices at www.edexcel-international.org/ sfc/ academic/regional/

For more information on Edexcel qualifications, please visit www.edexcel-international.org/ quals Alternatively, you can contact Customer Services at www.edexcel.org.uk/ask or on +44 1204770696

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

