IGCSE

Edexcel IGCSE

Mathematics - Higher (4400)

November 2006

Mark Scheme

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information please call our Customer Services on 0870240 9800, or visit our website at www.edexcel.org.uk.

J anuary 2007
Publications Code UG018569
All the material in this publication is copyright © Edexcel Ltd 2006

IGCSE Maths November 2006 - Paper 3H Final Mark Scheme

Question No.	Working	Answer	Mark	Notes
1	a		290 ± 2	2
b	$226-180$		2	M1
		046		A1 for 290 ± 5 or $360-70$

3	100×1.80 or 180		6	M1
	60×4.00 or 240			M1
	$4.00 \div 5$ or $0.8(0)$ or $3.2(0)$			M1 may be part of an expression
	35×3.20 or 112			M1
	"240" + " 112 " - " 180 "		M1 dep on at least 2 of previous 4 M marks	
		172		A1 cao
				Total 6 marks

4	a	$\frac{150 \pm 2}{360}$ oe inc $\frac{5}{12}, 0.42,0.416,0.417$	2	B1 B1	numerator $=150 \pm 2$ denominator $=360$
b	$10 \times 30+12 \times 12+14 \times 18+17 \times 60$ or $300+144+252+1020$ or 1716		4	M1finds products $f \times x$ consistently within intervals (inc end points) $\&$ sums them	
	use of at least 3 midpoints			M1	
	$\frac{\text { " } 1716 "}{120}$			M1 \quad (dep on 1 st M1) for division by $\Sigma \mathrm{f}$	
		14.3		A1	Accept 14 if all M marks scored
					Total 6 marks

5	$\frac{48}{60}$ or $60-48$		3	M1
	80 or ' $\frac{12 "}{60}$			M1
		20		A1 \quad cao

6	$240 \times \frac{5}{2}$		2	M1	
		600		A1 \quad cao SC B1 for $240 \times \frac{2}{5}$ or 96	
					Total 2 marks

7	$4 x<6$ or $-6<-4 \mathrm{x}$		3	M1	correctly collects x terms
				M1	correctly collects constants
		$\mathrm{x}<1.5$ oe		A1	
					Total $\mathbf{3}$ marks

8	$0.5+0.1$ or $0.5+0.1+0.3$ or table completed with 0.1		3	M1
	$1-(0.5+0.1)$ or1 $-(0.5+0.1+0.3)+0.3$			M1
		0.4		A1

9 a	$\mathrm{BM}=5$ seen or implied		4	B1	
	$13^{2}-5^{2}$ or 144			M1 for squaring and subtracting	
	$\sqrt{13^{2}-5^{2}}$			M1 for $\sqrt{13^{2}-5^{2}}$ only	
		12		A1 cao	
b	$\frac{1}{2} \times 10 \times 112$ "		4	M1 for $\frac{1}{2} \times 10 \times$ their (a)	
	$\times 4$			M1 dep on first M1	
	10×10 or 100			M1 indep	
		340		A1 ft from "12"	
					Total 8 marks

10	Q correct		4	B1		
	R correct			B1	ft from Q	
		Reflection		B1		ft from \mathbf{R} if at least one transformation correct
		$y=x$		B1	Accept eg in dotted line but, if stated, equation must be correct	
				Total 4 marks		

$11 \quad$ a	122255555666679		3	M1
	Attempt to find 4th (or 33/th) \& 12th (or 111⁄4th) values		M1	
		4		A1 \quad cao
bi	eg B had higher marks than A		2	B1 \quad B0 if median for A seen and $\neq 5$
ii	eg B less spread or more consistent			B1
				Total 5 marks

12 a	Attempt to find $\frac{\text { vert }}{\text { horiz }}$ for line PQ		4	M1	
	(gradient =) 2			A1	($\mathrm{y}=$) $2 \mathrm{x} \Rightarrow \mathrm{M} 1 \mathrm{~A} 1$
		$y=2 x-4$		B2	$\begin{aligned} & \text { ft from " } 2 \text { " B1 for } 2 \mathrm{x}-4 \\ & \text { B1 for } \mathrm{y}=\mathrm{mx}-4 \text { where } \mathrm{m} \neq 2 \\ & \hline \end{aligned}$
b	Line through (0, 1)		3	M1	
	Attempts grad $-1 / 2$ or correctly finds coordinates of another point			M1	
		Correct line		A1	Passes within 1 mm of $(-2,2)$ and (2,0)
					Total 7 marks

13	a		$\frac{1}{8}$	1	B1
b		$\frac{3}{7}$	1	B1	Accept equivalent fractions
c		$\frac{9}{64}$	1	B1	Total 3 marks

14 a	5000-1250x	2	B2	B1 for 5000 B1 for $-1250 x$	
b	$5000-1250 x=0$	3	M1	ft from a if at least B1 scored and a is linear	
	$\mathrm{x}=4$		M1		
	410000		A1		
ci	max	2	B1	independent	
ii	coeff of $x^{2}<0$ or $\frac{d y}{d x}>0$ for x value <4 and $\frac{d y}{d x}>0$ for x value >4 or $y<10000$ for x value <4 and for x value >4 or $\frac{d^{2} y}{d x^{2}}=-1250<0$		B1		
di	4	2	B1	ft from b if at least 1 scored	
ii	max profit oe		B1	Accept eg largest profit	
					Total 9 marks

15	$\frac{4}{3} \pi \times 3^{3} \div 2+\frac{1}{3} \pi \times 3^{2} \times 10$		4	M1for $\frac{4}{3} \pi \times 3^{3} \div 2$ or value rounding to 56.5 or 56.6
				M1for $\frac{1}{3} \pi \times 3^{2} \times 10$ or value rounding to 94.2 or 94.3
				M1for sum (dep on first two M marks)
		151		A1for 151 or better $(150.796 \ldots)$ $(3.14 \rightarrow 56.52+94.2=150.72)$

16	i		$\mathrm{B} \subset \mathrm{A}$	2
B 1	cao			
ii		$\mathrm{A} \cap \mathrm{B}=\varnothing$		B 1

17 ai		$1 \frac{1}{2}$ oe	2	B1		
ii		$\frac{3}{4} \text { oe }$		B1	Don't accept $\frac{-3}{-4}$	
b		1	1	B1	cao	
ci	$\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}$		4	M1		
	$\frac{\frac{x}{x-1}}{\frac{x-(x-1)}{x-1}} \text { or } \frac{x}{x-(x-1)} \text { oe }$			M1		SC B1 for $\mathrm{ff}(\mathrm{x})$ evaluated correctly for two values of x and an answer of x
		X		A1	cao	
ii	eg f is its own inverse, $\mathrm{f}^{-1}=\mathrm{f}$			B1 dep on correct ci	dep on correct ci	

18	$x^{2}=2 x+15$		5	M1 $\left(\frac{y-15}{2}\right)^{2}=y$
	$x^{2}-2 x-15=0$			M1 $y^{2}-34 y+225=0$
	$(x+3)(x-5)=0 x=\frac{2 \pm 8}{2}$			A1 $\quad y=9$ or $y=25$
	$x=-3$ or $x=5$	$-3,9$ and 5,25		A1
				Total 5 marks

19	a		$7-\mathrm{x}$	1
	$8-\mathrm{x}$ seen or $9,13,6$ marked correctly on diagram or $50-(10+9+13+6)=50-38=12$ and $8+7$ $=15$		3	M1
	$10+13+9+6+(7-\mathrm{x})+(8-\mathrm{x})+\mathrm{x}=50$ oe inc $7-\mathrm{x}+8-\mathrm{x}+\mathrm{x}=12$ or $15-12$			M1 \quad equation must be correct
		3		A1

$20 \quad$ a		$1: \sqrt{k}$	1	B1
	Accept \sqrt{k}			
b	$\sqrt{2}$ or $\sqrt{\frac{1}{2}}$ seen		2	M1
		7.1		A1for 7.1 or better (7.071...) Accept $\sqrt{50}$
				Total 3 marks

21 a		3 n oe	1	B1	Accept eg $\mathrm{n}+2 \mathrm{n}$	
b	$n-1,3 n-1$ seen		5	B2	B1 for each	
	$\frac{1}{3} \times \frac{n-1}{3 n-1}=\frac{1}{10} \text { oe inc } \frac{n}{3 n} \times \frac{n-1}{3 n-1}=\frac{1}{10}$			M1	for correct equation	
	$10(n-1)=3(3 n-1) \text { oe }$ inc $10 n(n-1)=3 n(3 n-1)$			M1	for correctly removing fractions	
	($\mathrm{n}=7$)	21		A1	cao	
						Total 6 marks
						Total 100 marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UG018569 J anuary 2007

For more information on Edexcel qualifications, please visit www.edexcel.orq.uk/ qualifications Alternatively, you can contact Customer Services at www.edexcel.org.uk/ ask or on 08702409800

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

