

Mark Scheme November 2008

IGCSE

IGCSE Mathematics (4400)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 44 1204 770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

November 2008 Publications Code UG020617 All the material in this publication is copyright © Edexcel Ltd 2008

Contents

1.	4400/1F	5
2.	4400/2F	17
3.	4400/3H	25
4.	4400/4H	39

www.dynamicpapers.com

4400 IGCSE Mathematics November 2008

www.dynamicpapers.com

24

November 2008 IGCSE 4400 Maths Mark Scheme - Paper 3H

Q	Working	Answer	Mark	Notes
1.	11.7		2	M1 for 11.7 or 6.5
	6.5	1.8		A1 Accept $\frac{9}{-}$ etc
				Total 2 marks

2.	(a)			7(<i>p</i> -3)	1	B1	cao		
	(b)	4 <i>x</i> + 20 seen	or $x + 5 - 3$		3	M1	for 4 <i>x</i> + 20 seen	or M2 for	
		4 <i>x</i> = 12 - 20	01 X + 3 = 3			M1	for 4 <i>x</i> = 12 - 20	x + 5 = 3	
							or		
							for $4x = 12 - 5$		
							following $4x + 5 =$		
							12		
				-2		A1			
									Total 4 marks

Q	Working	Answer	Mark		Notes
3. (a)	1×10+2×9+3×3+4×17+5×11 or 10+18+9+68+55 or 160		3	M1	for at least 3 correct products and summing them
	<u>"160"</u> 50			M1	(dep) for division by 50
		3.2		A1	Accept 3 if $\frac{160}{50}$ seen
(b)(i)		17 50	3	B1	Accept 0.34 or 34%
(ii)	$\frac{10+3}{50}$ or $\frac{10}{50} + \frac{3}{50}$			M1	
		13 50		A1	Accept 0.26 or 26%
(c)	'No' ticked and eg The scores are likely. 4 is	e not equally most likely.	1	B1	
					Total 7 marks

4.	(a)	translation	2	B1	Accept translated,	
					translate etc	
		7 to the left and 1 down or $\begin{pmatrix} -7\\ -1 \end{pmatrix}$		B1		These marks are independent but award no marks if the answer is not a single
	(b)	rotation	3	B1	Accept rotated, rotate etc	transformation
		90°		B1	Accept quarter turn Accept 270°clockwise	
		(0, 0)		B1	Accept origin, O	
						Total 5 marks

Q	Working	Answer	Mark	Notes
5. (a)	$\frac{35}{100} \times 180$ or 63		3	M1 M2 for 65 180
	180 - "63"			M1 dep 100 100
		117		A1 cao
(b)	$\frac{84}{0.35}$ or $84 \times \frac{100}{35}$		3	M2 for $\frac{84}{0.35}$ or $84 \times \frac{100}{35}$ M1 for $\frac{84}{35}$ or 2.4
		240		A1
(c)	$\frac{442}{0.65}$ or $442 \times \frac{100}{65}$		3	M2 for $\frac{442}{0.65}$ or $442 \times \frac{100}{65}$ M1 for $\frac{442}{65}$ or 6.8 or 65% = 442
		680		A1 cao
				Total 9 marks

6.	$\pi \times r^2 \times 7.6$		3	M2	if $r = \frac{4.3}{2}$ or 2.15 (M1 if $r = 4.3$ may be implied by answer rounding to 441)
		110		A1	for answer rounding to 110 ($\pi \rightarrow 110.367 \dots 3.14 \rightarrow 110.311 \dots$
					Total 3 marks

Q	Working	Answer	Mark	Notes
7.	$\frac{\frac{2}{5} \times \frac{7}{4}}{\text{or}}$ $\frac{\frac{14}{35}}{\frac{20}{35}} \div \frac{20}{35}$		3	B2 for $\frac{2}{5} \times \frac{7}{4}$ (B1 for inverting second fraction ie $\frac{7}{4}$) or B1 for 2 fractions with a denominator of 35 etc B1 for correct numerators
	$\frac{14}{20}$			B1 eg for $\frac{14}{20}$ oe or correct cancelling
				Total 3 marks

8. (a)(i)		ρ^6	2	B1	Сао	
(ii)		q^5		B1	сао	
(b)	12x - 3 - 8x + 12		2	M1	for 3 correct terms	
		4 <i>x</i> + 9		A1	сао	
(C)	$y^2 + 5y + 3y + 15$		2	M1	for 3 correct terms or y ² + 8y + c or + 8y + 15	
		$y^2 + 8y + 15$		A1	сао	
						Total 6 marks

Q	Working	Answer	Mark	Notes
9.	$\cos x^{\circ} = \frac{5.4}{8.7}$ or 0.6206		3	M1 for cos A1 for $\frac{5.4}{8.7}$ or 0.6206 or 0.6206 or M1 for sin and $\frac{\sqrt{"46.53"}}{8.7}$ following correct Pythagoras and A1 for value which rounds to 0.78 or M1 for tan and $\frac{\sqrt{"46.53"}}{5.4}$ following correct Pythagoras and A1 for value which rounds to 1.26
		51.6		A1 for answer rounding to 51.6
				Total 3 marks

	Q	Working	Answer	Mark		Notes
10.	(a)		(2, 7)	2	B2	B1 for 2 B1 for 7
	(b)	eg $\frac{13-1}{5-(-1)}$ or $\frac{12}{6}$ or $\frac{6}{3}$		4	M1	for clear attempt to use horizontal difference
		2			A1	
			y = 2x + 7		B2	for $y = 2x + 7$ or $y = "2" x + 7$
			or			B1 for $y = 2x + c$
			<i>y</i> ="2" <i>x</i> + 7			or for $y = 2^{n} x + c$ where $c \neq 7$
						or for 2 <i>x</i> + 7 , "2" <i>x</i> + 7 ,
						L = 2x + 7, $L = "2" x + 7$ etc
						ft from their "2" only if it supported by working such
						as a fraction or numbers indicated on a diagram, even though it may not have gained M1
						SC If no other marks scored, award B1 for
						y = mx + 7 for any m inc $m = 1$
						Total 6 marks

Q	Working	Answer	Mark		Notes
11. (a)	4	10 19 33 54	1	B1	Ca0
(b)		Points	2	B1	Allow <u>+</u> ½ sq ft from sensible table
		Curve		B1	or line segments (dep on 4 pts correct or ft correctly or 5 ordinates from (a) plotted correctly and consistently within intervals but not above end points)
(C)	27 (or 27½) indicated on graph or stated		2	M1	for 27 (or 271/2) indicated on graph or stated
		≈ 66		A1	ft from sensible graph
					Total 5 marks

Q	Working	Answer	Mark	Notes
12. (a)	$\frac{10}{6}$ oe or $\frac{6}{10}$ oe seen		3	B1 for $\frac{10}{6}$ oe (1.666) or $\frac{6}{10}$ oe (0.6) or $\frac{2}{3}$ (0.666)
	$5.1 \times \frac{10}{6}$ or $5.1 \div \frac{6}{10}$ or 8.5			M1 for $5.1 \times \frac{10}{6}$ or $5.1 \div \frac{6}{10}$ or $5.1 \times \frac{2}{3}$ or 8.5
		3.4		A1 cao
(b)	(scale factor) ² eg $\left(\frac{6}{10}\right)^2$ or $\frac{36}{100}$ or $\left(\frac{10}{6}\right)^2$ or $\frac{100}{36}$		3	M1 M2 for $\frac{\frac{1}{2} \times 6 \times 5.1 \sin \theta}{\frac{1}{2} \times (10 + 6) \times 3.4 \sin \theta}$ or $\frac{\frac{1}{2} \times 6 \times 5.1 \sin \theta}{\frac{1}{2} \times 6 \times 5.1 \sin \theta}$ M1
	eg 100 - 36, 64, $1 - \frac{36}{100}$, $\frac{64}{100}$			
		$\frac{9}{16}$ oe		A1
				Total 6 marks

Q	Working	Answer	Mark		Notes
13. (a)	4.5	1.9 3.1 4.1	2	B2	for all correct (B1 for 2 or 3 correct)
(b)		Points	2	B1	Allow $\pm \frac{1}{2}$ sq ft from table if at least B1 scored in (a)
		Curve		B1	ft from their points if at least 5 points are correct or ft correctly
(c)(i)		2	2	B1	cao
(ii)		1.6 or 1.7		B1	for answer which rounds to 1.6 or 1.7 ft from curve if B1 scored for curve in (b) Condone >1 dp
					Total 6 marks

14. (a)	3 <i>b</i> (3 <i>a</i> – 4 <i>b</i>)	2	B2	B1 for $3(3ab - 4b^2)$ or $b(9a - 12b)$ or for two factors one of which is $3b$ or $(3a - 4b)$ and the other is linear
(b)	$8a^{3}b^{6}$	2	B1	B1 for 8 B1 for a^3b^6
				Total 4 marks

Q	Working	Answer	Mark	Notes
15. (a)	$\frac{7}{9} \times \frac{6}{8}$		2	M1
		$\frac{42}{72}$ 0e		A1 for $\frac{42}{72}$ oe inc $\frac{7}{12}$
(b)	$\frac{7}{9} \times \frac{2}{8} + \frac{2}{9} \times \frac{7}{8}$		3	M1for one of correct productsor M2 for $1-(a) - \frac{2}{9} \times \frac{1}{8}$ SCM1 for $\frac{7}{9} \times \frac{2}{9}$ $1-(a) - \frac{2}{9} \times \frac{1}{8}$ M1 for $\frac{7}{9} \times \frac{2}{9}$ or $\frac{2}{9} \times \frac{7}{8}$ or $\frac{2}{9} \times \frac{7}{9}$ M1 forM1or $\frac{2}{9} \times \frac{7}{8}$ $\frac{7}{9} \times \frac{2}{9} + \frac{2}{9} \times \frac{7}{9}$ for sum of both correct productsor correct products $\frac{7}{9} \times \frac{2}{9} + \frac{2}{9} \times \frac{7}{9}$
		$\frac{28}{72}$ 0e		A1 for $\frac{28}{72}$ oe inc $\frac{7}{18}$
				Total 5 marks

16.	(a)(i)	54	2	B1	
	(ii)	angle between chord & tangent		B1	Accept 'alternate segment'
		= angle in alternate segment			
	(b)	angle <i>BCD</i> = 90°	2	B1	
		angle in a semicircle is a right angle		B1	Accept if 'semicircle' seen
	(c)(i)	102	2	B1	
	(ii)	opposite angles of a cyclic quadrilateral		B1	Accept if 'opposite' and 'cyclic' seen
		are supplementary			('Alternate segment' is an alternative)
					Total 6 marks

Q	Working	Answer	Mark	Notes
17. (a)	$10x = 7.\dot{7}$		2	M1 Accept $100x = 77.\dot{7}$
		7 90e		A1
(b)(i)		$\frac{y}{90}$	3	B1
(ii)	eg $9d = 1 + \frac{y-1}{10}$ or $90d = 10 + y - 1$ or $90d = y + 9$ or $\frac{10+y-1}{90}$ or $0.1 + 0.0\dot{y}$			M1 for equation which would give a correct answer or for an expression which, if simplified would give a correct answer or for $0.1+0.0\dot{y}$ but not for $9d = 1.y - 1$ or similar
		$\frac{9+y}{90}$ or $\frac{1}{10} + \frac{y}{90}$		A1 isw and award 2 marks if $\frac{9+y}{90}$ or $\frac{1}{10} + \frac{y}{90}$ seen
				Total 5 marks

Q	Working	Answer	Mark	Notes
18.	$\frac{2}{x+2} + \frac{x}{(x+2)(x+3)}$		5	B1 for factorising $x^2 + 5x + 6$
	$\frac{2(x+3)+x}{(x+2)(x+3)} \text{ or } \frac{2(x+3)}{(x+2)(x+3)} + \frac{2(x+3)}{(x+3)(x+3)} + \frac{2(x+3)}{(x+3)(x+3)$	$\frac{x}{2}(x+3)$		B1 for correct single fraction even if unsimplified or for correct sum of two fractions with the same denominator ft from incorrect factorisation
	$\frac{2x+6+x}{(x+2)(x+3)} = \frac{3x+6}{(x+2)(x+3)}$ or $\frac{2x+6+x}{x^2+5x+6} = \frac{3x+6}{x^2+5x+6}$			B1 for $\frac{2x+6+x}{(x+2)(x+3)}$ or $\frac{2x+6+x}{x^2+5x+6}$
	$\frac{3(x+2)}{(x+2)(x+3)}$			B1
		$\frac{3}{x+3}$		B1 cao
				SC if no denominator, award 3^{rd} B1 for $2x + 6 + x$ and 4^{th} B1 for $3(x + 2)$
				Total 5 marks

Q	Working	Answer	Mark	Notes
19.	$\frac{45}{360} \times \pi \times 6.7^2 - \frac{1}{2} \times 6.7^2 \times \sin 45^\circ$		5	M1 for $\frac{45}{360}$ oe
				M1 for $\pi \times 6.7^2$ or value which rounds to 141 seen
				M1 for completely correct method of finding the area of triangle <i>OAB</i>
				eg $\frac{1}{2} \times 6.7^2 \times \sin 45^\circ$
	17.628 (or 17.619) – 15.871			A1 for either area correctly evaluated rounded or truncated to 1 dp
		1.76 or 1.75		A1 for answer rounding to 1.76 if π key used (π \rightarrow 1.7572) or for answer rounding to 1.75 if π = 3.14 used (3.14 \rightarrow 1.7483)
				Total 5 marks

Q	Working	Answer	Mark	Notes
20.	eg $r^{2} + 9 = (r + 2)^{2}$ $r^{2} + 3^{2} = (r + 2)^{2}$ $r = \sqrt{(r + 2)^{2} - 9}$ $r = 2 = \sqrt{r^{2} + 9}$		5	M2 for correct use of Pythagoras' Rule M1 for $r^2 + 3^2$ or $r^2 + 9$ or $(r+2)^2$
	$r^2 + 9 = r^2 + 4r + 4$			B1
	4r = 5			M1
		$1\frac{1}{4}$ or 1.25		A1 Accept $\frac{5}{4}$
				Total 5 marks

www.dynamicpapers.com

Further copies of this publication are available from Edexcel UK Regional Offices at www.edexcel.org.uk/sfc/feschools/regional/ or International Regional Offices at www.edexcel-international.org/sfc/academic/regional/

For more information on Edexcel qualifications, please visit <u>www.edexcel-international.org/quals</u> Alternatively, you can contact Customer Services at <u>www.edexcel.org.uk/ask</u> or on + 44 1204 770 696

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH