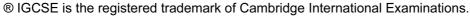
CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/41


Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Sylla	bus	Paper
	Cambridge International AS/A Level – October/November 2015	970)2	41

Section A

1	(a) ((i)	gravitational force provides/is the centripetal force	B1	
			$GMm_S/x^2 = m_S v^2/x$ (allow x or r, allow m or m_S)	M1	
			$E_{\rm K} = \frac{1}{2}m_{\rm S}v^2$ and clear algebra leading to $E_{\rm K} = GMm_{\rm S}/2x$	A1	[3]
	(i	ii)	$E_P = -GMm_S/x$ (sign essential)	B1	[1]
	(ii	ii)	$E_T = E_K + E_P$ = $GMm_S/2x - GMm_S/x$ = $-GMm_S/2x$ (allow ECF from (a)(ii))	C1 A1	[2]
	(b) ((i)	decreases	B1	[1]
	(i	ii)	decreases	В1	[1]
	(ii	ii)	decreases	В1	[1]
	(i	v)	increases	B1	[1]
	(for	answers in (b) allow ECF from (a)(iii))		
2			ys the equation $pV = nRT$ or $pV/T = constant$ symbols explained; T in kelvin/thermodynamic temperature	M1 A1	[2]
	(b) ((i)	temperature rise = 48 K	A1	[1]
	(i	ii)	$< c^2 > \infty$ T or equivalent $< c^2 > = (353/305) \times 1.9 \times 10^6$ $c_{r.m.s.} = 1480 \mathrm{m s}^{-1}$	C1 C1 A1	[3]
3			t/thermal energy gained by system <i>or</i> energy transferred to system by heating swork done on the system <i>or</i> minus work done by the system	B1 B1	[2]
	(b) ((i)	either volume decreases so work done on the system or small volume change so work done on system negligible (thermal) energy absorbed to break lattice structure internal energy increases	M1 M1 A1	[3]
	(i	ii)	gas expands so work done by gas (against atmosphere) no time for thermal energy to enter or leave the gas internal energy decreases	M1 M1 A1	[3]
4	f	orc	es applied : (body oscillates) without any loss of energy/no resistive forces/no external	B1	
			ed: continuous energy input (required)/body is made to vibrate by an ernal) periodic force/driving oscillator	B1	[2]

Page 3			Cam	Mark Scheme bridge International AS/A Level – October/November 2015	Syllabus 9702	Pap 41	
		ļ	Calli	ibridge international AS/A Level – October/November 2015	9702	41	
	(b)	(i)	ma	ea of resonance eximum amplitude at natural frequency quency = 2.1 Hz (<i>allow 2.08 to 2.12Hz</i>)		B1 B1 B1	[3]
		(ii)	pea	ak not very sharp/amplitude not infinite so frictional forces are pr	resent	B1	[1]
	(c)	V	$= \omega x$ $= 2\pi$ $= 0.6$	s ₀ 5 × 2.1 × 4.7 × 10 ⁻² (allow ECF from (b)(i)) 62 m s ⁻¹		C1 A1	[2]
5	(a)	(i)		ce proportional to the product of the two/point charges d inversely proportional to the square of their separation		B1 B1	[2]
		(ii)	1.	force radially away from sphere/to right/to east		B1	[1]
			2.	(maximum) at/on surface of sphere $or x = r$		B1	[1]
			3.	$F \propto 1/x^2 \text{ or } F = q_1 q_2/(4\pi\varepsilon_0 x^2)$		C1	
				ratio = 16		A1	[2]
	(b)	E:	= q/($(4\pi\varepsilon_0x^2)$ or $E\propto q$		C1	
		ma	aximu	um charge = $(2.0/1.5) \times 6.0 \times 10^{-7}$ = 8.0×10^{-7} C		C1	
		ad	ditior	nal charge = 2.0 × 10 ⁻⁷ C		A1	[3]
6	(a)	(i)		ce = mg and the field/of the motion		M1 A1	[2]
		(ii)	no	force		B1	[1]
	(b)	(i)		ce due to <i>E</i> -field downwards so force due to <i>B</i> -field upwards the plane of the paper		B1 B1	[2]
		(ii)	for	ce due to magnetic field = Bqv ce due to electric field = Eq se of F_B and F_E not explained, allow 1/2)		B1 B1	
			for	ces are equal (and opposite) so $Bv = E$ or $Eq = Bqv$ so $E = Bv$		B1	[3]
	(c)			smooth curved path ard' direction		M1 A1	[2]
7	(a)	for	emis	m frequency of e.m. radiation/a photon (not "light") ssion of electrons from a surface nce to light/UV rather than e.m. radiation, allow 1/2)		M1 A1	[2]

www.dynamicpapers.com
Syllabus Paper

D	age 4		Mark Scheme Sylla			·
F	age -		Cambridge International AS/A Level – October/November 2015 976		<u>Раре</u> 41	; <u>1</u>
			Cambridge international AS/A Level - October/November 2013 9/0	02	41	
	(b)		t_{AX} corresponds to electron emitted from surface ectron (below surface) requires energy to bring it to surface, so less than E_{N}	мАХ	B1 B1	[2]
	(c)	(i)	$1/\lambda_0 = 1.85 \times 10^6$ (allow 1.82 to 1.88)		C1	
		(ii)			A1	[2]
			= $6.63 \times 10^{-34} \times 5.55 \times 10^{14}$ (allow ECF from (c)(i)) = 3.68×10^{-19} J		C1 A1	[2]
	(d)		etch: straight line with same gradient ercept between 1.0 and 1.5		M1 A1	[2]
8	(a)	nu	cleus: <u>small</u> central part/core of an atom cleon: proton or a neutron rticle contained within a nucleus		B1 B1 B1	[3]
	(b)	(i)	1. decay constant = $\ln 2/(3.8 \times 24 \times 3600)$ = $2.1 \times 10^{-6} \text{s}^{-1}$		C1 A1	[2]
			2. $A = \lambda N$ $97 = 2.1 \times 10^{-6} \times N$ $N = 4.6 \times 10^{7}$		C1 A1	[2]
		(ii)	$1.0m^3$ contains (6.02 \times $10^{23})/(2.5\times10^{-2})$ air molecules		C1	
			ratio = $(4.6 \times 10^7 \times 2.5 \times 10^{-2})/(6.02 \times 10^{23})$ = 1.9×10^{-18}		A1	[2]

Syllabus

9702

Paper

41

Α1

Α1

Α1

Α1

[1]

[1]

[1]

[1]

		Section B		
9	(a)	(i) (+) 3.0 V	B1	[1]
		(ii) potential = $6.0 \times \{2.0 / (2.0 + 2.8)\}$ = 2.5 V	C1 A1	[2]
		(iii) potential = 6.0 × {2.0 / (2.0 + 1.8)} = 3.2 V	A1	[1]
	(b)	at 10 °C, $V_A > V_B$ V_{OUT} is -9.0 V (allow "negative saturation")	M1 A1	
		at 20 °C, V _{OUT} is +9.0 V (if 20 °C considered initially, mark as M1,A1,B1)	B1	
		sudden switch (from -9 V to $+9 \text{ V}$) when $V_A = V_B$	B1	[4]
10	(a)	sharpness: clarity of edges/resolution (of image) contrast: difference in degree of blackening (of structures)	B1 B1	[2]
	(b)	(i) X-rays produced when (high speed) electrons hit target/anode either electrons have been accelerated through 80 kV	B1	
		or electrons have (kinetic) energy of 80 keV	B1	[2]
		(ii) $I_T/I = e^{-3.0 \times 1.4}$ = 0.015	C1 A1	[2]
	(c)	for good contrast, μx or $e^{\mu x}$ or $e^{-\mu x}$ must be very different μx or $e^{\mu x}$ or $e^{-\mu x}$ for bone and muscle will be different than that for muscle so good contrast	B1 M1 A1	[3]
11	(a)	frequency of carrier wave varies in synchrony with the displacement of the signal/information wave	M1 A1	[2]

Mark Scheme

Cambridge International AS/A Level – October/November 2015

Page 5

(b) (i) 5.0 V

(ii) 720 kHz

(iii) 780 kHz

(iv) 7500

Pa	Page 6		Mark Scheme	Syllabus	Paper	
			Cambridge International AS/A Level – October/November 2015	9702	41	
12	(a)	(i)	(gradual) loss of power/intensity/amplitude (not "signal")		B1	[1]
		(ii)	e.g. noise can be eliminated (not "there is no noise") because pulses can be regenerated		M1 A1	
			e.g. much greater data handling/carrying capacity because many messages can be carried at the same time/grea	ater	M1	
			bandwidth		A1	
			e.g. more secure because it can be encrypted		(M1) (A1)	
			e.g. error checking because extra information/parity bit can be added		(M1) (A1)	[4]
			(allow any two sensible suggestions with 'state' M1 and 'explain' A2	1)		
	(b)	att	enuation = 10 lg (145/29) (= 7.0)		C1	
		att	enuation per unit length = 7.0/36 = 0.19 dB km ⁻¹		A1	[2]