## edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel International Advanced Level<br>in Biology (WBI02) Paper 01<br>Development, Plants and the Environment

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA040931*
All the material in this publication is copyright
© Pearson Education Ltd 2015

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question <br> Number | Answer | Mark |
| :--- | :--- | ---: |
| $\mathbf{1 ( a )}$ (i) | C - a mitochondrion; |  |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 1(a) (ii) | rER correctly labelled ; |  |  |
|  |  | example of correct response |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  | $\sqrt{x}$ | (1) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 1(b) (i) | 1. idea that ribosomes synthesise the \{ polypeptide / protein / eq \} ; <br> 2. proteins \{ move into / transported through / eq \} (the rER) ; <br> 3. protein is folded / forms \{3-D shape / secondary structure / tertiary structure \} ; <br> 4. idea that vesicles (containing the protein) are formed by rER ; | ACCEPT reference to enzyme or a hormone instead of protein for MP1 to MP4 <br> 1. ACCEPT ribosome as site of translation <br> 2. ACCEPT proteins move through cisternae <br> 3. I GNORE quaternary <br> 4. I GNORE secretory | (3) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ~ ( i i ) ~}$ | 1. idea that these vesicles move from Golgi (body) to the <br> cell (surface) membrane; <br> 2. idea that the (secretory) vesicle fuses with cell (surface) <br> membrane; <br> 3. by exocytosis ; | 3. NOT both exocytosis and <br> endocytosis | (2) |


| Question <br> Number | Answer | Mark |
| :---: | :--- | ---: |
| 2(a) (i) | B- centromeres ; |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | ---: |
| 2(a) (ii) | A - anaphase; |  |


| Question <br> Number | Answer | Mark |
| :---: | :--- | ---: |
| 2(a) (iii) | D - telophase ; |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 2(b) | 1. removal of \{ last 5-10 mm of root tips / (apical) meristem \} ; <br> 2. idea of use of (hydrochloric) acid to \{ separate cells / <br> break down middle lamella / break down pectin / <br> macerate tissue / soften tissue / eq \} ; | 2. ACCEPT HCl |  |
| 3. addition of appropriate stain, e.g. toluidine (blue), orcein ; | 3. ACCEPT Feulgens, Schiffs <br> reagent, acetocarmine | 4. idea of heating slide to intensify the \{ colour / stain \} ; <br> 5. idea of placing the root tip on microscope slide, covering <br> and squashing (to separate the cells) ; | (4) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 2(c) | 1. anaphase ; <br> 2. idea that the smallest number of cells are at this stage ; <br> 3. number of cells at each stage is proportional to the <br> duration of that stage <br> OR <br> idea that cells spend the shortest length of time at this <br> stage ; | 3. ACCEPT anaphase is the <br> fastest / quickest stage |  |


| Question Number | Answer |  |  |  |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3（a）（i） |  |  |  |  |  |  |  |
|  |  | Cellulose only | Starch only | Both starch and cellulose |  |  |  |
|  | Polymer of a－ glucose |  | 区 |  | ； |  |  |
|  | Polymer of $\beta$－ glucose | 区 |  |  | ； |  |  |
|  | Contains 1，4－ glycosidic bonds |  |  | 区 | ； |  |  |
|  | Contains 1，6－ glycosidic bonds |  | 区 |  | ； |  |  |
|  |  |  |  |  |  |  | （4） |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 3(a)(ii) | 1. made up of \{ many / eq \} (a) glucose (monomers) ; <br> 2. reference to energy storage / glucose is the respiratory <br> substrate / eq ; | 1. ACCEPT polymer of glucose <br> IGNORE polysaccharide |  |
| 3. it is \{ large / insoluble \} so has no osmotic effect / eq ; <br> 4. amylose is coiled AND amylopectin is \{ branched / has 1,6 <br> glycosidic bonds \}; | 5. compact so that more can be stored \{ in a small space / <br> eq \} ; | 6. ACCEPT breaks down / easily <br> hydrolysed <br> hydrolysis (to release glucose) / eq ; |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 3(b) | 1. idea that starch is a \{ sustainable / renewable \} resource / <br> bioplastic comes from a \{ sustainable / renewable \} <br> resource ; | 1. NOT bioplastics are renewable |  |
| 2. more plants can be grown ; | 3. plastic comes from a non-renewable resource / oil \{ is <br> non-renewable / will run out / eq \} ; <br> 4. bioplastics are biodegradable / eq ; | 4. ACCEPT converse statement | (3) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 4* (a)(i) | (QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) <br> 1. idea of standardisation of extraction method ; <br> 2. same \{ volume of extract / diameter of wells in agar / size paper discs \} ; <br> 3. idea of different agar plates for the $\{14$ / all / eq \} microorganisms ; <br> 4. description of aseptic technique, e.g. use of sterile equipment ; <br> 5. incubated at the same temperature AND for the same length of time <br> OR in range 20 to $30^{\circ} \mathrm{C}$ AND stated time in range 1 to 7 days; <br> 6. measure zone of inhibition ; <br> 7. replication qualified e.g. repeats \{ for each extract / for each microorganism / to calculate mean \} ; | QWC emphasis is logical sequence <br> 1. e.g. made from same mass of cloves and herbs, extracts have same concentration, extracts made using same volume of solvent NOT 'amount' <br> 6. IGNORE observe <br> 7. NOT repeat the experiment |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 4(a)(ii) | 1. clove is \{ most effective / effective against more species of <br> microorganism / eq \}; |  |  |
|  | 2. basil is the least effective (extract) / eq ; <br> 3. manipulation of data, e.g. the difference in percentage <br> effectiveness between cloves and another named extract ; | 3. e.g. $58 \%$ difference between <br> clove and basil, 43\% between <br> clove and lemon balm, $50 \%$ <br> between clove and rosemary <br> or 36\% between clove and <br> thyme | (2) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 4(b) | 1. both possess cell surface membrane ; <br> 2. both contain ribosomes / bacterial cells have smaller <br> ribosomes / eq ; | ACCEPT reference to eukaryotic <br> cell instead of yeast |  |
| 3. bacterial cells contain \{ circular DNA / nucleoid / plasmid \} <br> AND yeast have DNA that is \{ linear / contained in a <br> membrane / in a nucleus \} ; | 4. bacterial cells do not contain membrane bound organelles ; <br> 4. ACCEPT named membrane <br> bound organelle | 5. IGNORE description of <br> difference in cell wall <br> composition |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 5(a)(i) | Independent: (incubation) temperature; <br> Dependent: length of pollen tube; |  |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 5(a)(ii) | 1. figures from graph 0.2 and $0.9 ;$ |  |  |
|  | 2. calculation $\{0.9$ minus $0.2 / 0.7\}$ divided by $0.2 ;$  <br> $3.350(\%) ;$ correct answer gains 3 marks |  |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( a ) ( \text { iii }}$ | 1. \{ no significant / little difference \} at $\left\{15^{\circ} \mathrm{C} / 35^{\circ} \mathrm{C}\right\} ;$ <br> 2. idea of a positive correlation between temperature and <br> pollen tube length in A and B up to $30^{\circ} \mathrm{C} ;$ |  |  |
|  | 3. idea of greater effect (of temperature) on A than on $\mathrm{B} /$ <br> pollen tubes of A grew longer than B at all temperatures ; <br> 4. idea of $30^{\circ} \mathrm{C}$ as optimum temperature for both A and $\mathrm{B} ;$ | 4. ACCEPT pollen tubes the <br> longest at $30^{\circ} \mathrm{C}$ | (3) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 5(b) | 1. reference to \{ nuclei / (generative) nucleus / gametes \} ; <br> 2. idea of \{ creating / digesting / eq \} a pathway through <br> the style ; <br> 3. (from stigma) to \{ micropyle / embryo sac / ovule / egg <br> cell \} ; | 3. IGNORE ovum / ovary |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 5(c) | 1. idea of producing haploid \{ nuclei / cells \} ; <br> 2. genetic variation through \{ crossing over / independent <br> assortment / eq ; | 2. \& 3. ACCEPT random <br> assortment <br> chromosome number <br> combinations of (paternal and maternal) chromosomes ; <br> 4. crossing over involves swapping of \{ sections / eq \} of <br> chromatids ; <br> 5. new combinations of alleles produced ; | 4. NOT chromosome |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( a ) ( i )}$ | 1. (counting) \{ number / range / variety \} of species; <br> 2. in a \{ known / given / stated \} area of land ; <br> 3. genetic diversity within a species / number of different <br> alleles in a \{species / gene pool\} ;2. references to quadrats must <br> be qualified with measuring <br> an area |  | (2) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{6 ( a ) ( i i )}$ | endemic / endemism / endemic species; | (1) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 6(b) | (QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) <br> 1. increase \{ numbers / population size / eq \} ; <br> 2. \{ maintain / increase \} genetic diversity / reduce genetic drift / eq ; <br> 3. exchange of $\{$ macaques / gametes \} between zoos ; <br> 4. using \{ stud books / DNA profiling / eq \} (for selection of mates) ; <br> 5. preparation for reintroduction to the wild described ; <br> 6. idea of selection of safe area for reintroduction e.g. national park or reserve ; <br> 7. idea of protecting from \{ predators / poachers / eq \} (once released) ; | QWC - Emphasis on clarity of expression <br> 2. IGNORE genetic variation <br> 3. ACCEPT animals <br> 5. e.g. idea of reinforcing wild behaviour or reduce food intake or encourage hunting |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{7 ( a )}$ | Sclerenchyma / xylem ; | IGNORE reference to fibres, <br> vessels or tissue | (1) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{7 ( b ) ( i )}$ | the \{ force / weight / strain / stress / tension \} a fibre can <br> take without breaking <br> OR <br> the \{ force / weight / strain / stress \} required to make a <br> fibre break; | ACCEPT failing instead of <br> breaking <br> ACCEPT reference to load /mass <br> instead of force |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 ( b ) ( \text { ii) }}$ | 1. reference to \{ pectin / (calcium) pectate \}; <br> 2. reference to middle lamella ; <br> 3. idea of holding together microfibrils in cell walls ; <br> 4. idea that the fibres are stronger if cellulose microfibrils <br> held together more strongly ; |  |  |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 7(c)(i) | 1. diameter of fibres highest \{ in group 1 / with no mineral ions \} ; | 1. ACCEPT higher than both the control and group 2 <br> OR <br> higher than the groups with mineral ions |  |
|  | 2. idea of no significant difference between \{ high mineral ion / group 2 \} and control for fibre diameter ; | 2. ACCEPT little difference |  |
|  | 3. thickness of cell wall highest \{ in group 2 / with high mineral ion concentration \}; | 3. ACCEPT higher than both the control and group 1 |  |
|  | 4. idea of no significant difference between control and \{ group 1 / with no mineral ions \} on cell wall thickness ; | 4. ACCEPT little difference | (3) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 7(c)(ii) | 1. group 2 has more magnesium / control has less <br> magnesium ; | 1. I GNORE other mineral ions <br> such as nitrate |  |
|  | 2. magnesium required for chlorophyll (production); |  | (2) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | ---: |
| $\mathbf{8 ( a ) ( i )}$ | totipotency / totipotent ; |  |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 8(a)(ii) | 1. idea of \{ stimulus / chemical / hormone \} ; <br> 2. idea that some genes are \{ active / switched on / expressed \} ; <br> 3. idea of \{ transcription / mRNA produced \} at active genes ; <br> 4. mRNA is $\{$ translated / used \} to produce $\{$ protein / polypeptide \}; <br> 5. idea that this protein (permanently) modifies cell OR idea that this protein determines \{ cell structure / function \}; | 2. IGNORE genes being 'turned on' | (3) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{8 ( a ) ( \text { iii) }}$ | 1. idea of genes being \{ switched off / deactivated \}; <br> 2. idea that (cell) \{ permanently modified / irreversibly <br> changed \} ; |  |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{8 ( b )}$ | 1. reference to peer review ; |  |  |
|  | 2. idea of (other scientists) repeating the experiment; |  |  |
| 3. idea that same results were not achieved ; |  | (3) |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 8(c) | 1. produce transplant organs / building new organs / <br> 3-D printing of organs / eq ; <br> 2. repair or replace damaged tissues e.g. heart or spinal <br> cord / replace damaged cells; | IGNORE named condition that <br> could be treated with stem cell <br> therapy |  |

Pearson Education Limited. Registered company number 872828

