| Write your name here Surname | | Other names | |--|---------------|--------------------------| | Pearson Edexcel International Advanced Level | Centre Number | Candidate Number | | Biology Advanced Subsidiar Unit 1: Lifestyle, Tra | | enes and Health | | Tuesday 11 October 2016 –
Time: 1 hour 30 minutes | - Morning | Paper Reference WBI01/01 | | You must have: | | Total Marks | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. #### Information - The total mark for this paper is 80. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. - Candidates may use a calculator. #### **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ PEARSON P50701A ©2016 Pearson Education Ltd. DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA #### **Answer ALL questions.** Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . - 1 Mammals have a heart and circulation. - (a) The heart pumps blood. - (i) Place a cross in the box that gives the position of the heart valves during ventricular diastole. (1) | | | Atrioventricular valves | Semilunar valves | |----------|---|-------------------------|------------------| | X | A | closed | closed | | X | В | closed | open | | X | С | open | closed | | \times | D | open | open | (ii) Place a cross in the box that identifies when the pressure in the left ventricle will be highest. (1) - A at the end of systole - **B** at the start of systole - **C** in the middle of diastole - **D** in the middle of systole - (iii) Place a cross in the box that gives the relative concentrations of carbon dioxide in the blood. (1) | | | Highest concentration | Lowest concentration | |---|---|-----------------------|----------------------| | × | A | aorta | pulmonary vein | | × | В | aorta | vena cava | | × | C | vena cava | pulmonary artery | | X | D | vena cava | pulmonary vein | 2 (b) The diagram shows a cross section of an aorta. Magnification ×3 (i) Measure the maximum and minimum diameters of the lumen. Use these measurements to calculate a mean value. (1) Mean diametermm (ii) Use the mean diameter to calculate the area of the lumen, using the formula $a=\pi r^2 \ \, \text{where} \, \pi \, \text{is 3.14}$ (2) Area mm² DO NOT WRITE IN THIS AREA | (iii) Explain how the structure of an artery is related to its function. | (3) | |--|--------| (c) Explain why mammals need a blood circulation system. | (4) | (Total for Question 1 = 13 r | marks) | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA # **BLANK PAGE** DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA **2** Permethrin is a chemical used to kill invertebrate animals. The graph below shows the results of an investigation into the effect of permethrin on the heart rate of *Daphnia*. (a) Calculate the percentage change in the heart rate of *Daphnia* when the concentration of permethrin increases from 0 to 300 μ mol dm⁻³. (2) ...% DO NOT WRITE IN THIS AREA | (b) Describe now | an experiment could be car | ried out to obtain these res | cults. | |--------------------------|----------------------------------|------------------------------|--------------------------| (c) Suggest two r | easons why <i>Daphnia</i> were ເ | used in this investigation. | (2) | | (c) Suggest two r | easons why <i>Daphnia</i> were u | used in this investigation. | (2) | | (c) Suggest two r | easons why <i>Daphnia</i> were u | used in this investigation. | (2) | | (c) Suggest two r | easons why <i>Daphnia</i> were u | used in this investigation. | (2) | | (c) Suggest two r | easons why <i>Daphnia</i> were u | | (2)
tion 2 = 7 marks) | | (c) Suggest two r | easons why <i>Daphnia</i> were u | | | | (c) Suggest two r | easons why <i>Daphnia</i> were u | | | | (c) Suggest two r | easons why <i>Daphnia</i> were t | | | DO NOT WRITE IN THIS AREA ## **BLANK PAGE** DO NOT WRITE IN THIS AREA WRITE IN THIS AREA **3** Obesity is a risk factor in the development of cardiovascular disease (CVD). Arizona than in Pima Indians living in Mexico. (a) Pima Indians living in Arizona are genetically very similar to those living in Mexico. The table below shows the frequency of obesity in Pima Indians in these two locations. | Location of
Pima Indians | Frequency of obesity (%) | |-----------------------------|--------------------------| | Arizona | 30 | | Mexico | 13 | (i) Suggest why there is a higher frequency of obesity in Pima Indians living in | | | (2) | |------|--|-----| (ii) | Scientists are studying Pima Indians to investigate the causes of CVD. | | | | State two risk factors, other than obesity and genetic factors, associated with developing CVD. | | | | developing CVD. | (2) | | | | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (b) Body mass index (BMI) is one way of identifying individuals that are overweight or obese. BMI is calculated using the formula below. $$BMI = \frac{(mass in kilograms)}{(height in metres)^2}$$ A person has a mass of 70 kg and a height of 1.65 m. Place a cross ⊠ in the box that gives the BMI classification for this person. (1) | | | ВМІ | Classification | |---|---|--------------|----------------| | X | Α | < 18.5 | underweight | | X | В | 18.5 to 25.0 | healthy | | X | C | 25.1 – 30.0 | overweight | | X | D | > 30.0 | obese | (c) The results of a different study on the relationship between CVD and body mass index are shown in the graph below. DO NOT WRITE IN THIS AREA | (i) Using the information in the graph, describe the relationship between body mass index and the incidence of CVD. | (2) | |---|--------| | (ii) Suggest why BMI was used in this study. | (2) | | (iii) Suggest why CVD is expressed as incidence per 1000. | (1) | | (Total for Question 3 = 10 n | narks) | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 4 Polycystic kidney disease (PKD) is a rare inherited childhood condition where the development of the kidneys and liver is abnormal. The pedigree diagram below shows the inheritance pattern for one type of PKD. (a) Put a cross ⊠ in the box next to the correct words to complete the following statement. If an individual inherits a single copy of a recessive allele (1) - A all gametes will have the same allele - **B** all gametes will have two copies of the recessive allele - □ the allele has no effect on the phenotype - **D** the genotype is homozygous for the allele - (b) Using a genetic diagram, determine the probability that individual **H** is heterozygous for PKD. (3) Probability DO NOT WRITE IN THIS AREA | (c) Individual F is pregnant. | | |--|---| | Prenatal testing can be used to determine if her fetus will develop PKD. | | | (i) Describe one named method of collecting cells for pre-natal testing. (4) | | | Method | | | How this method is carried out | , | | | | | (ii) State one ethical and one social issue associated with pre-natal testing. | | | | | | Ethical issue | | | Ethical issue | | | | | | Ethical issue | | | | | | | | | Social issue | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA **BLANK PAGE** Cell membranes control the movement of materials into and out of cells. (a) The fluid mosaic model can be used to explain the properties of a cell membrane. Explain what is meant by the term fluid mosaic. (b) Several different processes are used to control the movement of materials into and out of cells. Facilitated diffusion and active transport are two of these processes. Place a cross \(\subseteq \) in the box that gives a correct feature of both facilitated diffusion and active transport. (1) | | Feature of the transport process | Facilitated diffusion | Active
transport | |------------|--|-----------------------|---------------------| | ⋈ A | can transport molecules against a concentration gradient | no | no | | ⊠ B | occurs only in animal cells | no | yes | | ⊠ C | requires ATP | yes | no | | ⊠ D | requires membrane proteins | yes | yes | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (c) In an experiment, a student decided to investigate the effect of solute concentration on water transport. A tube made from a partially permeable membrane was filled with 15 cm³ of 0.9% sodium chloride solution and the ends tied. This tube was weighed and then placed in a beaker containing 0.9% sodium chloride solution, as shown in the diagram below. This was repeated with a second tube containing 15 cm³ of 20% sodium chloride solution. Every 5 minutes the tubes were removed from the beakers, dried and reweighed. The results are shown in the graph below. DO NOT WRITE IN THIS AREA | Evn | ain what is meant by the | torm nartially normo : | abla | | |----------|---|-------------------------------|--------------------------|-------| | Ехр | ain what is meant by the | term partially permea | ible. | (2) | (ii) Exp | ain the change in mass of | f the 20% sodium chlor | ide tube during this | | | | eriment. | | | (4) | | | | | | (-1) | gest an explanation for the during this experiment. | e changes in the mass | of the 0.9% sodium chlor | ide | | tab | e during this experiment. | | | (2) | (Tota | al for Question 5 = 11 m | arks) | | | | | | | DO NOT WRITE IN THIS AREA | | | dition caused by mutations in the CFTR gene. | | |---------------------------------|----------------|---|----------| | a) State what i | s meant by the | e term mutation . | (1) | | | | | | | | | | | | o) Cystic fibros
on the CFTF | | ified according to the effect of different gene m | utations | | The table be protein. | elow shows thr | ee different mutations and their effects on the | CFTR | | | Mutation | Effect on the CFTR protein | | | | I | no CFTR protein is made | | | | III | non-functioning CFTR protein is present in the cell membrane in normal quantities | | | | V | functioning CFTR protein is present in the cell membrane in reduced quantities | | | (i) Explain
cystic fil | | III results in reduced gas exchange in people w | vith | | Cystic iii | JIOSIS. | | (4) | DO NOT WRITE IN THIS AREA | Describe how the C | FTR gene is transcribed. | | | |-----------------------|---------------------------|---------------------|----------------------| | | J | | (3) | Suggest how somatic g | ene therapy could be used | l to treat people w | ith cystic fibrosis. | | Suggest how somatic g | ene therapy could be used | l to treat people w | ith cystic fibrosis. | | Suggest how somatic g | ene therapy could be used | l to treat people w | | | Suggest how somatic g | ene therapy could be used | l to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | I to treat people w | | | Suggest how somatic g | ene therapy could be used | | | | Suggest how somatic g | ene therapy could be used | | (3) | | Suggest how somatic g | ene therapy could be used | | (3) | | Suggest how somatic g | ene therapy could be used | | (3) | DO NOT WRITE IN THIS AREA | (a) Suggest how major surgery could cause thrombophilia and why this might be dangerous complication after surgery. | oe a | |---|------| | | (5) | (b) Several anticoagulants are available to reduce the risk of thrombophilia in major surgery. One anticoagulant drug, METHRO II, developed for the treatment of thrombophilia, has been tested on patients. Each patient was randomly placed in one of four groups receiving a different dose of METHRO II. Some results from the trial are shown in the table below. | Dose of METHRO II | Percentage of patients (%) | | | | |-------------------|----------------------------|-------------------------|--|--| | / a.u. | With serious clotting | With excessive bleeding | | | | 1.0 | 37.8 | 0.8 | | | | 1.5 | 24.1 | 1.2 | | | | 2.3 | 23.7 | 3.5 | | | | 3.0 | 15.1 | 5.5 | | | (i) Describe the effect of METHRO II on thrombophilia. (1) (ii) Using the information in the table, suggest why a dose of 1.5 a.u. of METHRO II should be given to patients undergoing major surgery. (2) (Total for Question 7 = 8 marks) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA | 8 | The DNA | of an | organism | carries its | genetic | code. | |---|---------|-------|----------|-------------|---------|-------| | | | | | | | | (a) The diagram below shows part of the DNA of a gene. | C C A I I C | С | С | Α | Т | Т | С | |-----------------------|---|---|---|---|---|---| |-----------------------|---|---|---|---|---|---| (i) Place a cross \boxtimes in the box next to the mRNA produced from this DNA. (1) - B G G T A A G - ☑ D G G U A A G - (ii) Place a cross ⊠ in the box next to the sugar found in mRNA. (1) - A deoxyribose - B glucose - C ribose - **D** sucrose - (b) The genetic code is a triplet code. Explain why a triplet code is required for the synthesis of protein. (3) DO NOT WRITE IN THIS AREA | *(c) Explain how Meselson and Stahl's experiment provides evidence for the accepted theory for the replication of DNA. | | |--|-------| | | (5) | (Total for Question 8 = 10 ma | arks) | | TOTAL FOR PAPER = 80 MA | RKS | | | | | | | | | | | | | ## **BLANK PAGE**