FOR EDEXCEL

# GCE Examinations Advanced Subsidiary

# **Core Mathematics C4**

Paper K

Time: 1 hour 30 minutes

#### Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

#### Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

Leave blank

1.

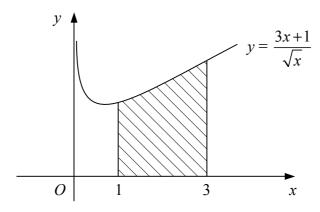



Figure 1

Figure 1 shows the curve with equation  $y = \frac{3x+1}{\sqrt{x}}$ , x > 0.

The shaded region is bounded by the curve, the x-axis and the lines x = 1 and x = 3.

Find the volume of the solid formed when the shaded region is rotated through  $2\pi$  radians about the *x*-axis, giving your answer in the form  $\pi(a + \ln b)$ , where *a* and *b* are integers.

**(6)** 

| 2. | (a) | Expand $(1 - 3x)^{-2}$ , $ x  < \frac{1}{3}$ , in ascending powers of x up to and including the term in $x^3$ , simplifying each coefficient. | (4) | lank |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|    | (b) | Hence, or otherwise, show that for small $x$ ,                                                                                                |     |      |
|    |     | $\left(\frac{2-x}{1-3x}\right)^2 \approx 4 + 20x + 85x^2 + 330x^3.$                                                                           | (3) |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |
|    |     |                                                                                                                                               |     |      |

Leave

| Leave |  |
|-------|--|
| blank |  |

| 3. | $f(x) = \frac{7+3x+2x^2}{(1-2x)(1+x)^2},  x  > \frac{1}{2}$ |
|----|-------------------------------------------------------------|
|    | (1-2x)(1+x)                                                 |

- (a) Express f(x) in partial fractions. (4)
- (b) Show that

$$\int_{1}^{2} f(x) dx = p - \ln q,$$

where p is rational and q is an integer. (7)

| 3. | continued | Le<br>bla |
|----|-----------|-----------|
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |
|    |           |           |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

**(4)** 

**4.** Relative to a fixed origin, two lines have the equations

$$\mathbf{r} = \begin{pmatrix} 7 \\ 0 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ 4 \\ -2 \end{pmatrix}$$

and

(c)

$$\mathbf{r} = \begin{pmatrix} a \\ 6 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 14 \\ 2 \end{pmatrix},$$

where a is a constant and  $\lambda$  and  $\mu$  are scalar parameters.

Given that the two lines intersect,

- (a) find the position vector of their point of intersection, (5)
- (b) find the value of a. (2)

Given also that  $\theta$  is the acute angle between the lines,

find the value of  $\cos \theta$  in the form  $k\sqrt{5}$  where k is rational.

| 4. | continued | Leave blank |
|----|-----------|-------------|
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |

| 5. A curve has the equation                                                          |     |
|--------------------------------------------------------------------------------------|-----|
| $x^2 - 4xy + 2y^2 = 1.$                                                              |     |
| (a) Find an expression for $\frac{dy}{dx}$ in its simplest form in terms of x and y. | (5) |
| (b) Show that the tangent to the curve at the point $P(1, 2)$ has the equation       | l   |
| 3x - 2y + 1 = 0.                                                                     | (3) |
| The tangent to the curve at the point $Q$ is parallel to the tangent at $P$ .        |     |
| (c) Find the coordinates of $Q$ .                                                    | (4) |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |
|                                                                                      |     |

| (         |              | Leave \ |
|-----------|--------------|---------|
|           |              | blank   |
| =         | a antions ad |         |
| <b>5.</b> | continued    |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |
|           |              |         |

|    |                                                                                                                                 |     | ∟ea<br>olai |
|----|---------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| 6. | The rate of increase in the number of bacteria in a culture, $N$ , at time $t$ hours in proportional to $N$ .                   |     |             |
|    | (a) Write down a differential equation connecting $N$ and $t$ .                                                                 | (1) |             |
|    | Given that initially there are $N_0$ bacteria present in a culture,                                                             |     |             |
|    | (b) Show that $N = N_0 e^{kt}$ , where k is a positive constant.                                                                | (6) |             |
|    | Given also that the number of bacteria present doubles every six hours,                                                         |     |             |
|    | (c) find the value of $k$ ,                                                                                                     | (3) |             |
|    | (d) find how long it takes for the number of bacteria to increase by a factor of ten, giving your answer to the nearest minute. | (3) |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |
|    |                                                                                                                                 |     |             |

| 6. contin | nued | Lea<br>bla |
|-----------|------|------------|
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |
|           |      |            |

Leave blank

| 7   |  |            |  |
|-----|--|------------|--|
|     |  | parametric |  |
|     |  |            |  |
| / • |  |            |  |
|     |  |            |  |
|     |  |            |  |

$$x = \sec \theta + \tan \theta$$
,  $y = \csc \theta + \cot \theta$ ,  $0 < \theta < \frac{\pi}{2}$ .

(a) Show that 
$$x + \frac{1}{x} = 2 \sec \theta$$
. (5)

Given that  $y + \frac{1}{y} = 2 \csc \theta$ ,

(c) Show that 
$$\frac{dx}{d\theta} = \frac{1}{2}(x^2 + 1)$$
. (3)

(d) Find an expression for 
$$\frac{dy}{dx}$$
 in terms of x and y. (4)

|    |           | Leave<br>blank |
|----|-----------|----------------|
| 7. | continued | Diank          |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |

| 7 | • | continued | Leave blank |
|---|---|-----------|-------------|
| _ |   |           |             |
| _ |   |           |             |
| _ |   |           |             |
|   |   |           |             |
| _ |   |           |             |
| _ |   |           |             |
|   |   |           |             |
|   |   |           |             |
| _ |   |           |             |
|   |   |           |             |
|   |   |           |             |
| _ |   |           |             |
|   |   |           |             |
|   |   |           |             |
| _ |   |           |             |
|   |   |           |             |
| _ |   |           |             |
| _ |   |           |             |
|   |   |           |             |
|   |   | END       |             |