FOR EDEXCEL

GCE Examinations Advanced Subsidiary

Core Mathematics C4

Paper J

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

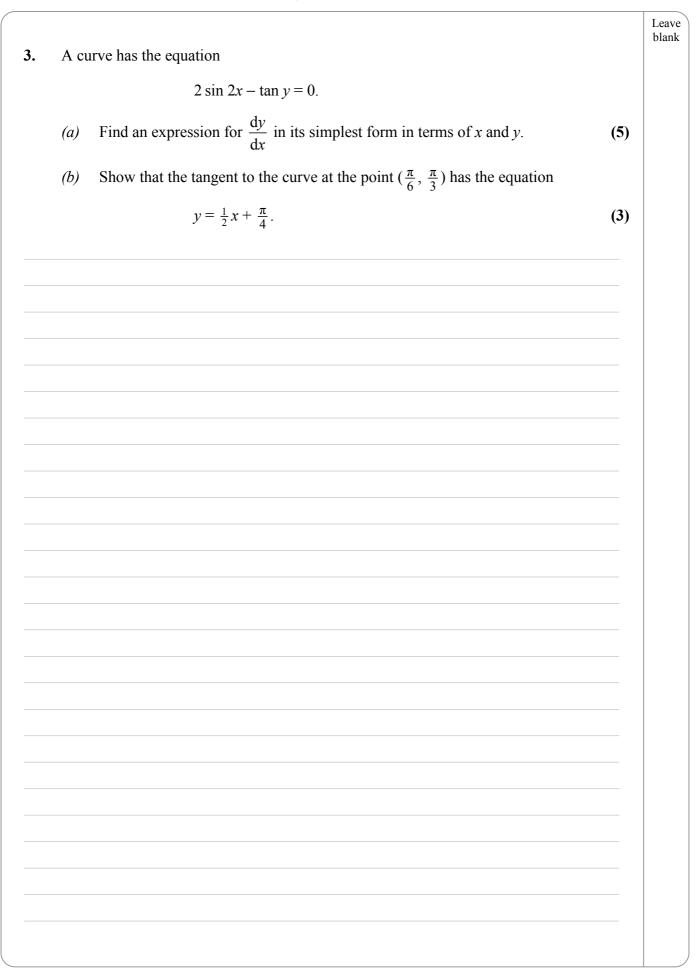
Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has eight questions.

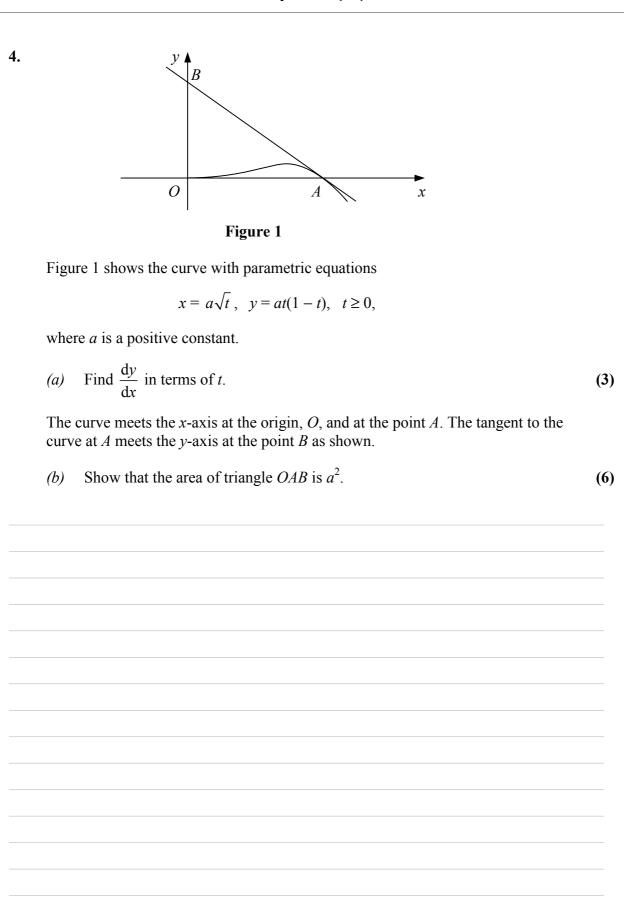
Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

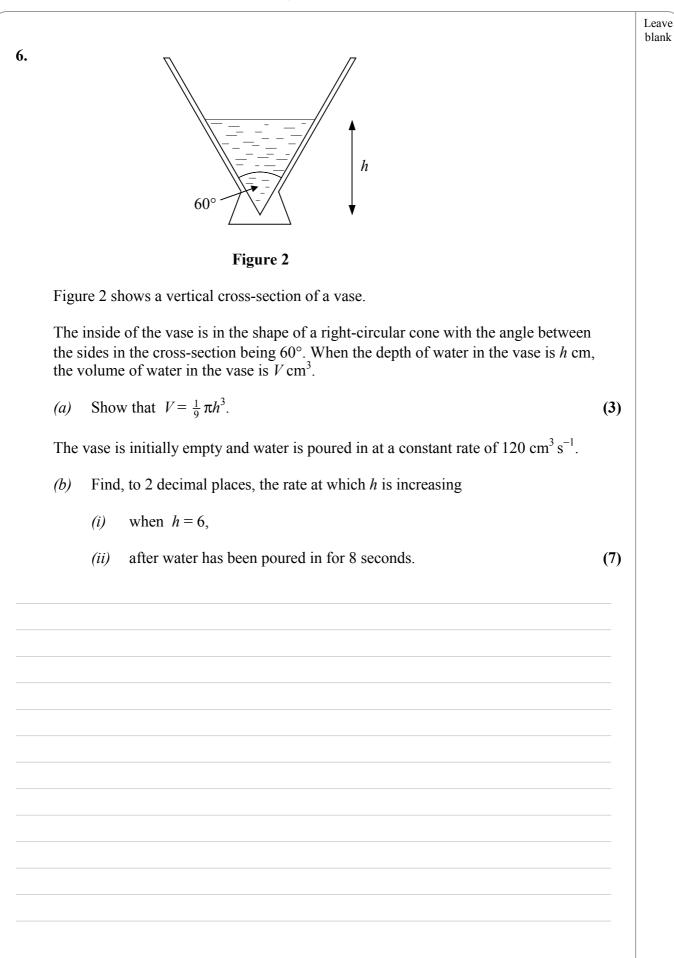


Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.


1.	The region bounded by the curve $y = x^2 - 2x$ and the <i>x</i> -axis is rotated through 2π radians about the <i>x</i> -axis.		Lea blai
	Find the volume of the solid formed, giving your answer in terms of π .	(6)	
			<u> </u>

	3. continued	Leave
-		
-		
-		
-		
-		
-		
-		
-		
_		
-		
-		
-		
-		
-		
-		
-		
_		
_		
-		
-		
-		


Leave blank

~	4. continued	Lea bla	eave ank
			_

Leave blank The gradient at any point (x, y) on a curve is proportional to \sqrt{y} . 5. Given that the curve passes through the point with coordinates (0, 4), show that the equation of the curve can be written in the form *(a)* $2\sqrt{y} = kx + 4,$ where *k* is a positive constant. (5) Given also that the curve passes through the point with coordinates (2, 9), find the equation of the curve in the form y = f(x). *(b)* (4)

5. continued	Leave blank

6. continued	Leav blan

- 7. Relative to a fixed origin, the points A and B have position vectors $\begin{pmatrix} -4\\1\\3 \end{pmatrix}$ and $\begin{pmatrix} -3\\6\\1 \end{pmatrix}$ respectively.
 - (a) Find a vector equation for the line l_1 which passes through A and B.

The line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} 3\\ -7\\ 9 \end{pmatrix} + \mu \begin{pmatrix} 2\\ -3\\ 1 \end{pmatrix}.$$

(b) Show that lines l_1 and l_2 do not intersect.

(5)

(2)

Leave blank

(c) Find the position vector of the point C on l_2 such that $\angle ABC = 90^{\circ}$. (6)

_
_
_
_
_
_
_
-
_
_
-
_
_
_

7. continued	blank

-
63
х
v

$$f(x) = \frac{x(3x-7)}{(1-x)(1-3x)}, |x| < \frac{1}{3}.$$

(a) Find the values of the constants A, B and C such that

$$f(x) = A + \frac{B}{1-x} + \frac{C}{1-3x}.$$
 (4)

(b) Evaluate

$$\int_0^{\frac{1}{4}} f(x) dx,$$

giving your answer in the form $p + \ln q$, where p and q are rational. (5) Find the series expansion of f(x) in ascending powers of x up to and (5)

(c) including the term in x^3 , simplifying each coefficient.

C4_J page 14

Leave blank

		Leave blank
8.	continued	

8. continued	Leave
END	