GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

Paper J

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

(11)

S1 Paper J - Marking Guide

(i) median =
$$28^{th}$$
 = $23.5 + (\frac{4}{20} \times 2) = 23.9 \text{ g}$ M1 A1

(ii)
$$33^{\text{rd}} \text{ percentile} = \frac{33}{100} \times (55 + 1) \text{th} = 18.48^{\text{th}} \text{ value}$$
 M1

=
$$21.5 + (\frac{9.48}{15} \times 2) = 22.8 \text{ g}$$
 M1 A1

(b) 24 - 25: class width
$$2 \to 1$$
 cm \therefore class width $1 \to 0.5$ cm M1 freq. den. = $\frac{20}{2} = 10 \to 20$ cm \therefore freq. den. $1 \to 2$ cm M1

(i) 20 - 21: class width 2 :. width 1 cm A1 freq. den. =
$$\frac{6}{2}$$
 = 3 :. height 6 cm A1

(ii) 26 - 29: class width 4
$$\therefore$$
 width 2 cm A1 freq. den. = $\frac{9}{4}$ = 2.25 \therefore height 4.5 cm A1

2. (a)
$$\sum P(x) = k + \frac{1}{2}k + \frac{1}{3}k + \frac{1}{4}k = \frac{25}{12}k = 1$$
 $\therefore k = \frac{12}{25}$ M2 A1

(b)
$$\frac{12}{25} + \frac{6}{25} = \frac{18}{25}$$
 M1 A1

(c)
$$\sum xP(x) = \frac{12}{25} + \frac{12}{25} + \frac{12}{25} + \frac{12}{25} = \frac{48}{25}$$
 M1 A1

(d)
$$E(X^2) = \sum x^2 P(x) = \frac{12}{25} + \frac{24}{25} + \frac{36}{25} + \frac{48}{25} = \frac{24}{5}$$
 M1 A1
 $E(X^2 + 2) = \frac{24}{5} + 2 = \frac{34}{5}$ M1 A1 (11)

3. (a)
$$P(Z > \frac{165 - 156}{\sqrt{73}}) = P(Z > 1.05) = 0.1469$$
 M2 A1

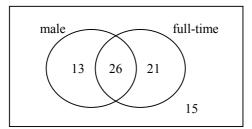
(b)
$$1 - (0.5 + 0.1469) = 0.3531$$
 M1 A1

(c)
$$P(14\text{yo} > 165) = P(Z > \frac{165 - 160}{\sqrt{79}}) = P(Z > 0.56) = 0.2877$$
 M2 A1
 $P(\text{both} > 165) = 0.1469 \times 0.2877 = 0.0423 \text{ (3sf)}$ M1 A1

4. (a) mean =
$$\frac{427}{20}$$
 = 21.35 minutes M1 A1
variance = $\frac{11077}{20}$ - 21.35² = 98.0 minutes² (3sf) M2 A1

(b) for
$$2^{\text{nd}}$$
 sample: $\frac{\Sigma t}{30} = 18.5$ $\therefore \Sigma t = 30 \times 18.5 = 555$ M1

$$\frac{\Sigma t^2}{30}$$
 -18.5² = 8.2² $\therefore \Sigma t^2$ = 30(8.2² + 18.5²) = 12284.7 M2 A1


for combined sample: mean =
$$\frac{427+555}{50}$$
 = 19.6 minutes (3sf) M1 A1

variance =
$$\frac{11077+12284.7}{50} - 19.64^2 = 81.5 \text{ minutes}^2 \text{ (3sf)}$$
 M1 A1 (13)

M1

(b)

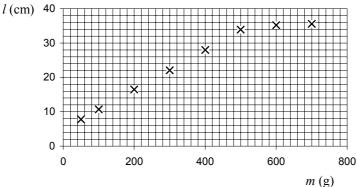
5. (a)

В3

 $\frac{21}{75} = \frac{7}{25}$ *(b)* (i)

M1 A1

(ii)


M1 A1

 $\frac{47}{75} \times \frac{46}{74} \times \frac{45}{73} = 0.240 \text{ (3sf)}$ (c) (i)

- M2 A1
- $1 P(\text{all male}) = 1 (\frac{39}{75} \times \frac{38}{74} \times \frac{37}{73}) = 0.865 \text{ (3sf)}$ (ii)
- M3 A1

(14)

6. (a)

B4

- (b) e.g. the first six values lie roughly along a straight line but this changes for the two values above 500 g
- B2

 $S_{ml} = 39540 - \frac{1550 \times 119}{6} = 8798.33$ (c)

M1

 $S_{mm} = 552500 - \frac{1550^2}{6} = 152083$

M1

 $b = \frac{8798.33}{152083} = 0.05785$

M1 A1

 $a = \frac{119}{6} - (0.05785 \times \frac{1550}{6}) = 4.888$

M1 A1

 $\therefore a = 4.89, b = 0.0579$

- В1
- (d) a is the length of the spring with no mass suspended from it b is the extra extension for each additional gram suspended from spring
- B1
- Total (75)

(14)

Performance Record - S1 Paper J

1	2	3	4	5	6	Total
interpolation, histogram	discrete r. v.	normal dist.	mean and variance	probability	scatter diagram, regression	
11	11	12	13	14	14	75
	interpolation, histogram	interpolation, discrete histogram r. v.	interpolation, discrete normal histogram r. v. dist.	interpolation, discrete normal mean and variance	interpolation, discrete normal mean and variance probability	interpolation, discrete normal mean and variance r. v. dist. mean and variance probability scatter diagram, regression