GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper J MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

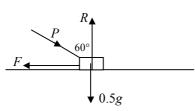
(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

www.dynamicpapers.com

M1 Paper J – Marking Guide

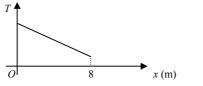

1.	(a)	speed = $17 = \text{mag. of vel.} = \sqrt{(8^2 + \lambda^2)}$ $\lambda^2 = 289 - 64 = 225; \ \lambda > 0 \text{ so } \lambda = 15$	M1 M1 A1
		$\Delta \mathbf{v} = 1$ ($\mathbf{v} = \mathbf{v}$) ($\mathbf{v} = \mathbf{v}$) ($\mathbf{v} = \mathbf{v}$)	

(b)
$$a = \frac{\Delta v}{t} = \frac{1}{5} [(3\mathbf{i} + 5\mathbf{j}) - (8\mathbf{i} + 15\mathbf{j})] = -\mathbf{i} - 2\mathbf{j}$$
 M2 A1
 $\mathbf{F} = m\mathbf{a} = 2(-\mathbf{i} - 2\mathbf{j}) = -2(\mathbf{i} + 2\mathbf{j})$ so $\mu = -2$ M1 A1 (8)

2. (a)

3.

4.



	• 0.5g		
	resolve \uparrow : $R - P\cos 60^\circ - 0.5g = 0$ $\therefore R = 0.5g + P\cos 60^\circ$ resolve \rightarrow : $P\sin 60^\circ - F = 0$	M1 A1 M1	
	$F = \mu R = \frac{1}{\sqrt{3}} \left(0.5g + 0.5P \right)$	M1 A1	
	sub. in giving $\frac{\sqrt{3}}{2}P - \frac{1}{\sqrt{3}}(0.5g + 0.5P) = 0$	M1	
	$3P - P - g = 0 :: 2P = g \text{ so } P = \frac{g}{2}$	Al	
<i>(b)</i>	brush is moved slowly so very little air resistance	B1	(8)
(a)	cons. of mom: $1500(2) + 0 = (1500 + 750)V$	M1	
	$3000 = 2250V$: $V = \frac{4}{3}$	M1 A1	
<i>(b)</i>	impulse = Δ mom = 750($\frac{4}{3}$ - 0) = 1000 Ns	M1 A1	
(c)	car has $(27 + 9)$ m in which to stop and travels 18 m in first second	M1	
	must stop from 18 ms ⁻¹ in 18 m	A1	
	u = 18, s = 18, v = 0, a = f $v^2 = u^2 + 2as$, so $0 = 324 - 36f$	M1 M1	
	f = 9 so to stop before hitting other car, $f > 9$	Al	(10)
(a)	eqn. of motion for A: $T - 6g = 6a$ (1)	M1	
	eqn. of motion for $B \& C$: $8g - T = 8a$ (2)	M1	
	(1) + (2) gives $2g = 14a$ i.e. $a = \frac{g}{7}$ ms ⁻²	M1 A1	
<i>(b)</i>	sub. <i>a</i> into (1) to get $T = 6a + 6g = \frac{6g}{7} + 6g$	M1	
	force on pulley = $2T = \frac{96g}{7}$	M1 A1	
<i>(c)</i>	resolve \downarrow for <i>C</i> : $3g - R = 3 \times \frac{g}{7}$	M1	
	$R = 3g - \frac{3g}{7} = \frac{18g}{7}$	M1 A1	(10)

www.dynamicpapers.com

5.	(a)	For <i>Q</i> : $a = \frac{\Delta v}{t} = \frac{6-0}{6} = 1$ u = 0, v = 4, use $v = u + at$: $4 = 0 + 1t$ i.e. $t = 4$ seconds	M1 M1 A1
	(b)	speed (ms ⁻¹) $\begin{pmatrix} 6 \\ 4 \\ \hline O \\ 4 \\ \hline O \\ 4 \\ 6 \\ \hline \end{pmatrix} \begin{pmatrix} Q \\ P \\ P \\ \hline \end{pmatrix}$ time (seconds)	В3
	(c)	<i>Q</i> will catch <i>P</i> when area under <i>Q</i> graph = area under <i>P</i> graph $\therefore \frac{1}{2} (6)(6) + 6(t-6) = 4t$ i.e. $18 + 6t - 36 = 4t$ $\therefore 2t = 18$ $\therefore t = 9$ after 9 seconds, <i>P</i> has travelled $4 \times 9 = 36$ cm, $\therefore Q$ reaches top first if $x > 36$	M1 M1 A1 M1 A1 (11)

6. (a) as rock moves further from A, tension at A decreases linearly and is a minimum when rock reaches B.

7.

O 8 x (m)	В3	
max. tension when rock at one end (A, say) moments about $B: 50g(4) + Mg(8) - T_A(8) = 0$ $8Mg = 8T_A - 200g \therefore Mg = T_A - 25g$ given $T_A \le 40g$; $Mg \le 40g - 25g$ (= 15g) i.e. $M \le 15$	B1 M1 M1 A1	
assume rock placed as close to <i>A</i> as poss. so that $T_A = 40g$ resolve (\uparrow): $T_A + T_B = 50g + 20g = 70g \therefore T_B = 30g$ moments about centre of plank : $T_A (4) - T_B (4) - 20g(d) = 0$ $160g - 120g - 20gd = 0 \therefore d = 2$ rock can be 2 m either side of centre i.e. 4 m out of 8 m = $\frac{1}{2}$ plank	M1 A1 M1 M1 A1 A1	(14)
cargo ship travels $(9t\mathbf{i} - 6t\mathbf{j})$ km in t hours pos ⁿ vector after t hours is $[(7\mathbf{i} + 56\mathbf{j}) + (9t\mathbf{i} - 6t\mathbf{j})]$ km $= [(7 + 9t)\mathbf{i} + (56 - 6t)\mathbf{j}]$ km pos ⁿ vector of ferry after t hours is $(12t\mathbf{i} + 18t\mathbf{j})$ km	M1 A1 A1	
they will collide if coeffs. of i and j in pos ⁿ vectors are equal $7 + 9t = 12t$ and $56 - 6t = 18t$ are both satisfied when $t = \frac{7}{3}$ collision after $\frac{7}{3}$ hrs or 2 hrs 20 mins i.e. at 8:20 a.m. pos ⁿ vector = $12(\frac{7}{3})\mathbf{i} + 18(\frac{7}{3})\mathbf{j} = (28\mathbf{i} + 42\mathbf{j})$	B1 M1 A1 A1 M1 A1	
at 8 a.m. ferry at $(24\mathbf{i} + 36\mathbf{j})$ $\frac{1}{3}$ hr at $21\mathbf{i} + 6\mathbf{j} = 7\mathbf{i} + 2\mathbf{j}$ so at 8:20 a.m. ferry is at $31\mathbf{i} + 38\mathbf{j}$ at 8:20 a.m cargo ship is at $(28\mathbf{i} + 42\mathbf{j})$ dist. between = $\sqrt{(3^2 + 4^2)} = 5$ km	M2 A1 M1 A1	(14)
	max. tension when rock at one end (A, say) moments about $B: 50g(4) + Mg(8) - T_A(8) = 0$ $8Mg = 8T_A - 200g \therefore Mg = T_A - 25g$ given $T_A \le 40g$; $Mg \le 40g - 25g$ (= 15g) i.e. $M \le 15$ assume rock placed as close to A as poss. so that $T_A = 40g$ resolve (\uparrow): $T_A + T_B = 50g + 20g = 70g \therefore T_B = 30g$ moments about centre of plank : $T_A(4) - T_B(4) - 20g(d) = 0$ $160g - 120g - 20gd = 0 \therefore d = 2$ rock can be 2 m either side of centre i.e. 4 m out of 8 m = $\frac{1}{2}$ plank cargo ship travels $(9ti - 6tj)$ km in t hours pos ⁿ vector after t hours is $[(7i + 56j) + (9ti - 6tj)]$ km = [(7 + 9t)i + (56 - 6t)j] km they will collide if coeffs. of i and j in pos ⁿ vectors are equal $7 + 9t = 12t$ and $56 - 6t = 18t$ are both satisfied when $t = \frac{7}{3}$ collision after $\frac{7}{3}$ hrs or 2 hrs 20 mins i.e. at 8:20 a.m. pos ⁿ vector = $12(\frac{7}{3})i + 18(\frac{7}{3})j = (28i + 42j)$ at 8 a.m. ferry at $(24i + 36j)$ $\frac{1}{3}$ hr at $21i + 6j = 7i + 2j$ so at 8:20 a.m. ferry is at $31i + 38j$ at 8:20 a.m cargo ship is at $(28i + 42j)$	max. tension when rock at one end (A, say) moments about $B: 50g(4) + Mg(8) - T_A(8) = 0$ $8Mg = 8T_A - 200g \therefore Mg = T_A - 25g$ given $T_A \le 40g; Mg \le 40g - 25g (= 15g)$ i.e. $M \le 15$ assume rock placed as close to A as poss. so that $T_A = 40g$ resolve (\uparrow): $T_A + T_B = 50g + 20g = 70g \therefore T_B = 30g$ moments about centre of plank: $T_A (4) - T_B (4) - 20g(d) = 0$ $160g - 120g - 20gd = 0 \therefore d = 2$ rock can be 2 m either side of centre i.e. 4 m out of 8 m = $\frac{1}{2}$ plank cargo ship travels $(9ti - 6tj)$ km in t hours pos ⁿ vector after t hours is $[(7i + 56j) + (9ti - 6tj)]$ km = [(7 + 9t)i + (56 - 6t)] km they will collide if coeffs. of i and j in pos ⁿ vectors are equal $7 + 9t = 12t$ and $56 - 6t = 18t$ are both satisfied when $t = \frac{7}{3}$ MI A1 pos ⁿ vector = $12(\frac{7}{3})i + 18(\frac{7}{3})j = (28i + 42j)$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1

Total (75)

www.dynamicpapers.com

Performance Record – M1 Paper J

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	i , j , F = ma	statics, friction	cons. of mom., impulse, uniform accel.	connected bodies	speed - time graph, uniform accel.	moments	rel. posn. i, j	
Marks	8	8	10	10	11	14	14	75
Student								