FOR EDEXCEL

# GCE Examinations Advanced Subsidiary

# **Core Mathematics C2**

Paper I

Time: 1 hour 30 minutes

### Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has nine questions.

## Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1.

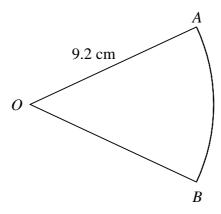



Figure 1

Figure 1 shows the sector *OAB* of a circle of radius 9.2 cm and centre *O*.

Given that the area of the sector is 37.4 cm<sup>2</sup>, find to 3 significant figures

(a) the size of  $\angle AOB$  in radians,

**(2)** 

(b) the perimeter of the sector.

**(2)** 

2. The first three terms of a geometric series are (p-1), 2 and (2p+5) respectively, where p is a constant.

Find the two possible values of p.

**(5)** 

- 3. Find the area of the finite region enclosed by the curve  $y = 5x x^2$  and the x-axis. (6)
- **4.** Solve the equation

$$\sin^2 \theta = 4 \cos \theta$$

for values of  $\theta$  in the interval  $0 \le \theta \le 360^{\circ}$ .

**(7)** 

#### **5.** Given that

$$f(x) = x^3 + 7x^2 + px - 6,$$

and that x = -3 is a solution to the equation f(x) = 0,

- (a) find the value of the constant p, (2)
- (b) show that when f(x) is divided by (x-2) there is a remainder of 50, (2)
- (c) find the other solutions to the equation f(x) = 0, giving your answers to 2 decimal places. (5)

#### **6.** The circle *C* has the equation

$$x^2 + y^2 - 12x + 8y + 16 = 0.$$

- (a) Find the coordinates of the centre of C. (2)
- (b) Find the radius of C. (2)
- (c) Sketch C. (2)

Given that C crosses the x-axis at the points A and B,

(d) find the length AB, giving your answer in the form  $k\sqrt{5}$ .

#### 7. Given that for small values of x

$$(1+ax)^n \approx 1 - 24x + 270x^2,$$

where n is an integer and n > 1,

- (a) show that n = 16 and find the value of a, (7)
- (b) use your value of a and a suitable value of x to estimate the value of  $(0.9985)^{16}$ , giving your answer to 5 decimal places. (3)

Turn over

#### **8.** (a) Given that

$$\log_2(y-1) = 1 + \log_2 x$$
,

show that

$$y = 2x + 1. ag{3}$$

(b) Solve the simultaneous equations

$$\log_2(y-1) = 1 + \log_2 x$$

$$2\log_3 y = 2 + \log_3 x$$
(7)

9.  $10x \\ 8x$ 

Figure 2

Figure 2 shows a tray made from sheet metal.

The horizontal base is a rectangle measuring 8x cm by y cm and the two vertical sides are trapezia of height x cm with parallel edges of length 8x cm and 10x cm. The remaining two sides are rectangles inclined at  $45^{\circ}$  to the horizontal.

Given that the capacity of the tray is 900 cm<sup>3</sup>,

- (a) find an expression for y in terms of x, (3)
- (b) show that the area of metal used to make the tray,  $A ext{ cm}^2$ , is given by

$$A = 18x^2 + \frac{200(4+\sqrt{2})}{x},\tag{4}$$

- (c) find to 3 significant figures, the value of x for which A is stationary, (4)
- (d) find the minimum value of A and show that it is a minimum. (3)

#### **END**