GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

Paper H MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper H – Marking Guide

1.	(a)	$\sum x \mathbf{P}(x) = \frac{1}{8}k + \frac{3}{8}(k+4) + \frac{1}{2}(2k) = \frac{3}{2}(k+1)$	M2 A1	
	<i>(b)</i>	$\frac{3}{2}(k+1) = 9; \ k = 5$	M1 A1	(5)
2.	(a) (b)	 e.g. using a distribution or other simplified way of representing a real situation that allows predictions to be made about it (i) not suitable e.g. discrete etc. / +ve skew (ii) suitable e.g. likely to be similar time most days, sometimes fair bit more, sometimes fair bit less (iii) not suitable e.g. very different values in winter / summer 	B2 B2 B2 B2	(8)
3.	(a)	1 - 0.22 = 0.78	M1 A1	(8)
	(u) (b)	0.78 - 0.35 = 0.43	M1 A1	
	(c)	$\frac{P(A \cap B)}{P(A)} = \frac{0.7 - 0.43}{0.7} = 0.386 \text{ (3sf)}$	M2 A1	
	(d)	not independent as e.g. $P(B A) \neq P(B)$	B2	(9)
4.	(a)	$P(Z < \frac{127 - 122.3}{2.6}) = P(Z < 1.81) = 0.9649$	M2 A1	
	<i>(b)</i>	$P(Z < \frac{121.5 - 122.3}{2.6}) = P(Z < 0.31) = 0.3783$	M2 A1	
	(c)	$P(Z < \frac{454 - \mu}{1.6}) = 0.05$ $\frac{454 - \mu}{1.6} = -1.6449; \ \mu = 456.6 \text{ (4sf)}$	M1 M1 A2	(10)
5.	(a)	5 vowels, 7 consonants P(V=1) = 3 $\times \frac{5}{12} \times \frac{7}{11} \times \frac{6}{10} = \frac{21}{44}$	M2 A1	
	(b)	$P(V=0) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} = \frac{7}{44}$ $P(V=2) = 3 \times \frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} = \frac{7}{22}$ $P(V=3) = \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} = \frac{1}{22}$ $\frac{v \qquad 0 \qquad 1 \qquad 2 \qquad 3}{P(V=v) \qquad \frac{7}{44} \qquad \frac{21}{44} \qquad \frac{7}{22} \qquad \frac{1}{22}$	M2 A2	
	(c)	$E(V) = \sum v P(v) = 0 + \frac{21}{44} + \frac{14}{22} + \frac{3}{22} = \frac{5}{4}$ $E(V^2) = \sum v^2 P(v) = 0 + \frac{21}{44} + \frac{28}{22} + \frac{9}{22} = \frac{95}{44}$ $Var(V) = \frac{95}{44} - (\frac{5}{4})^2 = \frac{105}{176} \text{ or } 0.597 \text{ (3sf)}$	M1 A1 M1 A1 M1 A1	(13)

6. freq. dens. = 0.9, 1, 1.65, 1.2, 0.72, 0.78, 0.52 M1 A1 *(a)* freq. dens. 1.5 1 0.5 B2 0 50 100 150 0 200 250 300 no. of people cum. freqs: 36, 56, 89, 113, 149, 188, 240 M1 *(b)* $Q_1 = 60^{th} = 60.5 + 20(\frac{4}{33}) = 62.9 \ [60.25^{th} \rightarrow 63.1]$ $Q_2 = 120^{\text{th}} = 100.5 + 50(\frac{7}{36}) = 110.2 \ [120.5^{\text{th}} \rightarrow 110.9]$ M2 A3 $Q_3 = 180^{th} = 150.5 + 50(\frac{31}{39}) = 190.2 \ [180.75^{th} \rightarrow 191.2]$ $Q_3 - Q_2 = 80.0$, $Q_2 - Q_1 = 47.3$; $Q_3 - Q_2 > Q_2 - Q_1$: +ve skew M2 A1 (13) (c) 7. (a) 0.333 0.25 0.2 0.5 0.167 х M1 A1 69 d 102 48 d 110 100 90 80 70 60 50 B3 40 0 0.2 0.4 0.6 0.8 1 x the points lie roughly on a straight line B1 *(b)* $S_{xd} = 189.733 - \frac{2.45 \times 390}{6} = 30.483$ (c) M1 $S_{xx} = 1.491 - \frac{2.45^2}{6} = 0.490583$ M1 $b = \frac{30.483}{0.490583} = 62.136$ M1 A1 $a = \frac{390}{6} - (62.136 \times \frac{2.45}{6}) = 39.628$ M1 A1 d = 39.6 + 62.1xA1 m = 13, $x = \frac{1}{13}$; $d = 39.6 + (62.1 \times \frac{1}{13}) = 44.4$, so 44 cases (d) M2 A1 (e) not very reliable as it requires extrapolation well outside the data B1 (17) Total (75)

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	discrete r. v.	modelling, normal dist.	probability	normal dist.	discrete r. v.	histogram, interpol'n	scatter diagram, regression	
Marks	5	8	9	10	13	13	17	75
Student								

Performance Record – S1 Paper H