GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper H MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

www.dynamicpapers.com

M1 Paper H – Marking Guide

1.	(a)	resolve \uparrow : $T\cos 30 - W = 0$	M1	
		$\frac{\sqrt{3}}{2}T = 10$: $T = \frac{20\sqrt{3}}{3} = 11.5$ N (3sf)	M1 A1	
	<i>(b)</i>	resolve \rightarrow : $H - T\sin 30 = 0$	M1	
		$H = \frac{1}{2}T$ so $T: H = 1: \frac{1}{2} = 2:1$	M1 A1	(6)
2.	(a)	$\mathbf{R} = (5\mathbf{i} - 3\mathbf{j}) + (3\mathbf{i} + 2\mathbf{j}) + (4\mathbf{i} - 5\mathbf{j}) = 12\mathbf{i} - 6\mathbf{j}$	M1 A1	
		mag. of $\mathbf{R} = \sqrt{[12^2 + (-6)^2]} = \sqrt{180} = 6\sqrt{5}$	M1 A1	
	(b)	$a = \frac{\mathbf{F}}{m} = \frac{1}{8}(12\mathbf{i} - 6\mathbf{j}) = \frac{3}{2}\mathbf{i} - \frac{3}{4}\mathbf{j}$	M1 A1	
		req'd angle = $\tan^{-1} \frac{\frac{34}{4}}{\frac{3}{2}} = \tan^{-1} \frac{1}{2} = 26.6^{\circ} (1 \text{dp})$	M1 A1	(8)
3.	(a)	use of $s = (\frac{u+v}{2})t$ with $u = 5$, $v = 20$ and $t = 30$	M1	
		$s = \frac{25}{2} \times 30 = 375 \text{ m}$	M1 A1	
	(b)	$a = \frac{\Delta v}{t} = \frac{20-5}{30} = 0.5, s = 187.5, u = 5$ use $s = ut + \frac{1}{2}at^2$	M1 A1	
		$187.5 = 5t + 0.25t^2 \therefore t^2 + 20t - 750 = 0$	M1	
		use quadratic formula to give $t = 10 \pm 5\sqrt{34}$	M1 A1	
		take +ve root $\therefore t = 19.15$ seconds (2dp)	A1	(9)
4.	(a)	// to $\mathbf{i} - \mathbf{j}$: $2q^2 - 3 = (q + 2)$	M1	
		$2q^2 + q - 1 = 0$: $(2q - 1)(q + 1) = 0$	M1 A1	
		$q=rac{1}{2}$, $q=1$	A1	
	<i>(b)</i>	$q = 1$ \therefore vel = $\mathbf{i} + \mathbf{j}$	B1	
		at time t, pos ⁿ vector is $(6\mathbf{i} - \mathbf{j}) + t(-\mathbf{i} + \mathbf{j}) = (6 - t)\mathbf{i} + (t - 1)\mathbf{j}$ $d^2 = (6 - t)^2 + (t - 1)^2$ and $d^2 < 5^2$	A1	
		$d^2 = (6-t)^2 + (t-1)^2$ and $d^2 < 5^2$ $\therefore t^2 - 12t + 36 + t^2 - 2t + 1 < 25$	M1	
		$\therefore t - 12t + 56 + t - 2t + 1 < 25$ $t^2 - 7t + 6 < 0 \therefore (t - 1)(t - 6) < 0$	M1 A1	
		$1 \le t \le 6$ i.e. 5 seconds	A1	(10)
5.	(a)	$u = 0, s = 0.5, a = 16$ use $v^2 = u^2 + 2as$	M1	
		$v^2 = 0 + 2(16)(0.5)$ $\therefore v = 4 \text{ ms}^{-1}$	M1 A1	
	(b)	cons. of mom. $12(4) = (12 + 4)V$	M1	
		$48 = 16V \therefore V = 3 \text{ ms}^{-1}$	A1	
	(c)	eqn. of motion: $16g - 1500 = 16a$	M1 A1	
	. *	$\therefore a = -83.95$	A1	
		use with $u = 3$, $v = 0$ in $v^2 = u^2 + 2as$	M1	(11)
		$v^2 = 3^2 - 167.9s$ giving $s = 0.054$ m = 5.4 cm	M1 A1	(11)

www.dynamicpapers.com

6.	(a)	$\begin{bmatrix} R_1 \\ A \end{bmatrix} \begin{bmatrix} R_2 \\ B \end{bmatrix}$		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		resolve \uparrow : $R_1 + R_2 = 135g$ moments about A: $60g(0.6) - R_2(1.2) + 75g(1.6) = 0$ $1.2R_2 = 156g \therefore R_2 = 130g = 1274 \text{ N}$ $R_1 = 5g = 49 \text{ N}$	M1 M1 A1 M1 A1 A1	
	(b)	when $R_1 = 0$, moments about <i>B</i> : $20g(0.6) + 40g(x) - 75g(0.4) = 0$ $12g + 40gx = 30g \therefore 40x = 18$ $x = 0.45$ but <i>x</i> is dist. L of <i>B</i> \therefore Luigi can move to 0.85 m from mother	M1 A1 A1 M1 A1	
	(c)	bench is on point of tilting	B1	(12)
7.	(a)	eqn. of motion for 5 kg mass: $5g - T = 5a$ (1) eqn. of motion for 4 kg mass: $T - \mu R - 4g\sin 30 = 4a$ (2) but resolving perp. to plane: $R - 4g\cos 30 = 0$ \therefore $R = 2g\sqrt{3}$ sub. for R in (2) gives $T - 2\mu g\sqrt{3} - 2g = 4a$ (3) (1) + (3) gives $3g - 2\mu g\sqrt{3} = 9a$ \therefore $a = \frac{1}{9}(3 - 2\mu\sqrt{3})g$	M1 M1 M1 A1 A1 M1 A1	
	(b)	since motion takes place, $a > 0$ i.e. $3 - 2\mu\sqrt{3} > 0$ $\therefore \mu < \frac{\sqrt{3}}{2}$	B1 M1 A1	
	(c)	$\mu = \frac{1}{2} \text{ means } a = \frac{3-\sqrt{3}}{9}g$ $T = 5g - 5a = 5g - 5(\frac{3-\sqrt{3}}{9})g$	B1 M1	
	(d)	$T = \frac{5}{9} \left(6 + \sqrt{3} \right) g$	M1 A1	
		force on pulley = $2T\cos 30$	M1 A1	
		$= \frac{10}{9}(6+\sqrt{3})g\frac{\sqrt{3}}{2} = \frac{5}{9}(6\sqrt{3}+3)g$	M2	
		$=\frac{5}{3}(2\sqrt{3}+1)g$ N	A1	(19)

Total (75)

Performance Record – M1 Paper H

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	statics	i , j , F = ma	uniform accel	rel. posn. i, j	cons. of mom.	moments	connected bodies, friction	
Marks	6	8	9	10	11	12	19	75
Student								