FOR EDEXCEL

## GCE Examinations Advanced Subsidiary

## **Core Mathematics C4**

Paper G Time: 1 hour 30 minutes

## Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

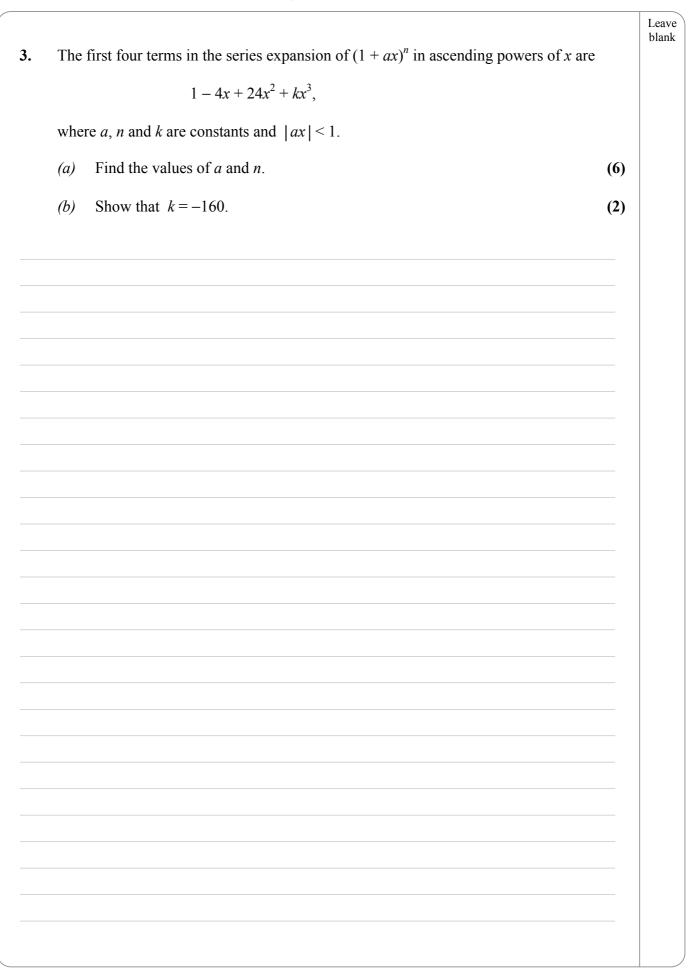
Full marks may be obtained for answers to ALL questions.

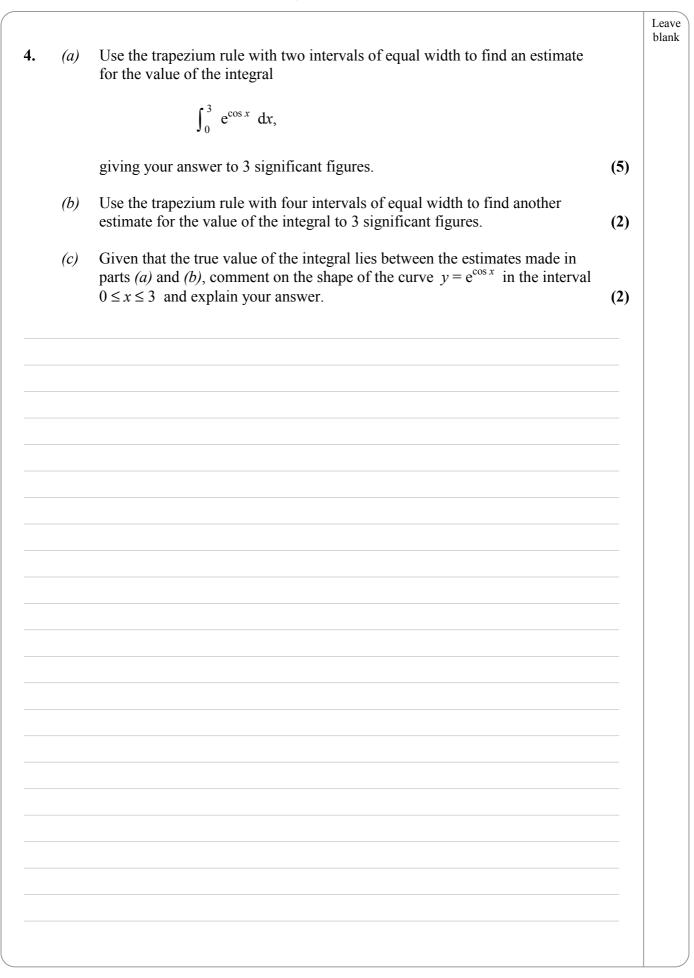
Mathematical formulae and statistical tables are available.

This paper has eight questions.

## Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.





Written by Shaun Armstrong © Solomon Press

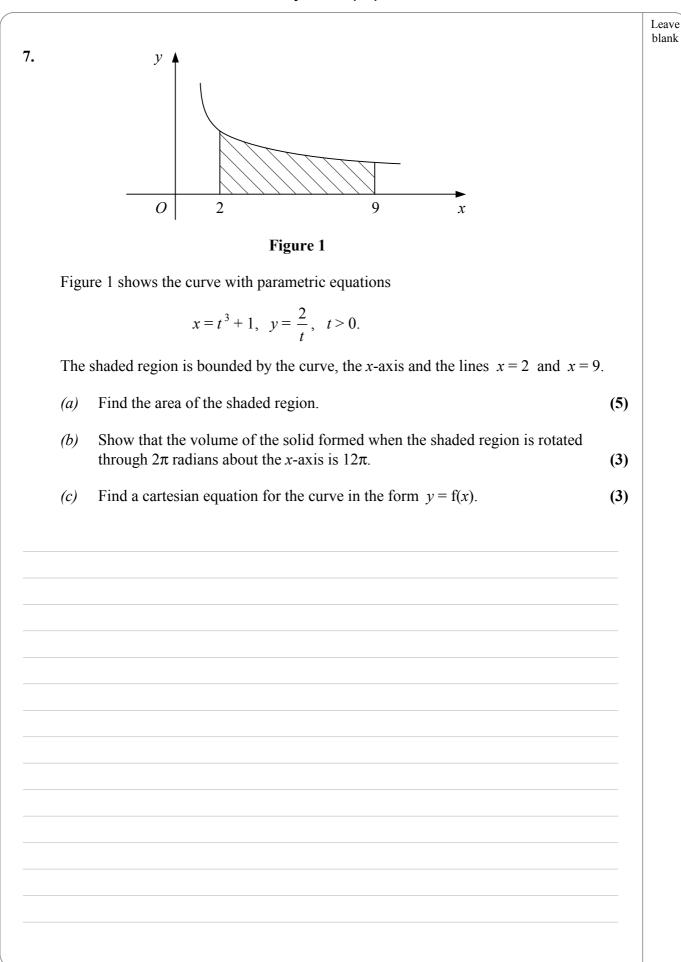
These sheets may be copied for use solely by the purchaser's institute.

|    |                                                                 | Leave<br>blank |
|----|-----------------------------------------------------------------|----------------|
| 1. | A curve has the equation                                        | Utalik         |
|    | $x^2 + 2xy^2 + y = 4.$                                          |                |
|    | x + 2xy + y - 4.                                                |                |
|    | Find an expression for $\frac{dy}{dx}$ in terms of x and y. (6) | ถ              |
|    | dx                                                              |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |
|    |                                                                 |                |

|    |                                  | Leave blank |
|----|----------------------------------|-------------|
| 2. | Use integration by parts to find | Ulalik      |
|    |                                  |             |
|    | $\int x^2 e^{-x} dx.$            | 7)          |
|    | 5                                |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  | -           |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  | _           |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |
|    |                                  |             |






| ~ | 4. continued | Leave<br>blank |
|---|--------------|----------------|
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |
|   |              |                |

| 5. | A straight road passes through villages at the points A and B with position vectors $(9\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$ and $(4\mathbf{j} + \mathbf{k})$ respectively, relative to a fixed origin. | L<br>b |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    | The road ends at a junction at the point $C$ with another straight road which lies along the line with equation                                                                                            |        |
|    | $\mathbf{r} = (2\mathbf{i} + 16\mathbf{j} - \mathbf{k}) + \mu(-5\mathbf{i} + 3\mathbf{j}),$                                                                                                                |        |
|    | where $\mu$ is a scalar parameter.                                                                                                                                                                         |        |
|    | (a) Find the position vector of $C$ .                                                                                                                                                                      | (5)    |
|    | Given that 1 unit on each coordinate axis represents 200 metres,                                                                                                                                           |        |
|    | (b) find the distance, in kilometres, from the village at $A$ to the junction at $C$ .                                                                                                                     | (4)    |
|    |                                                                                                                                                                                                            |        |
|    |                                                                                                                                                                                                            |        |
|    |                                                                                                                                                                                                            |        |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            |        |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            |        |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            |        |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            |        |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            | _      |
|    |                                                                                                                                                                                                            |        |

| 5. | continued | Leave<br>blank |
|----|-----------|----------------|
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           |                |
|    |           | 1              |

Leave blank A small town had a population of 9000 in the year 2001. 6. In a model, it is assumed that the population of the town, P, at time t years after 2001 satisfies the differential equation  $\frac{\mathrm{d}P}{\mathrm{d}t} = 0.05P\mathrm{e}^{-0.05t}.$ Show that, according to the model, the population of the town in 2011 will *(a)* be 13 300 to 3 significant figures. (7) Find the value which the population of the town will approach in the long *(b)* term, according to the model. (3)

| 6. cont | tinued | Leave<br>blank |
|---------|--------|----------------|
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |
|         |        |                |



| _ |
|---|
|   |
|   |
| _ |
|   |
| _ |
|   |
| _ |
| _ |
| _ |
|   |
| _ |
|   |
| _ |
| _ |
|   |
| _ |
|   |
| _ |
| _ |
| _ |
| _ |
| _ |

8. (a) Show that the substitution  $u = \sin x$  transforms the integral

$$\frac{6}{\cos x(2-\sin x)} dx$$

into the integral

$$\frac{6}{(1-u^2)(2-u)} du.$$
 (4)

Leave blank

(4)

(b) Express 
$$\frac{6}{(1-u^2)(2-u)}$$
 in partial fractions.

(c) Hence, evaluate

$$\int_0^{\frac{\pi}{6}} \frac{6}{\cos x(2-\sin x)} \, \mathrm{d}x,$$

giving your answer in the form  $a \ln 2 + b \ln 3$ , where a and b are integers. (7)

|    |           | Leave |
|----|-----------|-------|
| 8. | continued | blank |
| 0. | continued |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |
|    |           |       |

| 8. continued | Leave<br>blank |
|--------------|----------------|
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
|              |                |
| END          |                |