GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper G MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

M1 Paper G – Marking Guide

1.	$A \xrightarrow{R} x \xrightarrow{T} B$						
	resol	ve $\uparrow: R + T = 10g; R + \frac{3}{2}R = 10g$	M2				
		= $10g; \therefore R = 4g$ so $T = 6g$	A1				
		tents about pivot: $10gx - 4(6g) = 0$ = 24g, so $x = 2.4$ and hence c.o.m. is 4.4 m from A	M1 M1 A1	(6)			
2.	(a)	mass of ball remains constant, force is constant F = ma so a constant	B2	A1 (6) A1 (9) A1 (9) A1 (9) A1 (9) A1 (9)			
	<i>(b)</i>	(i) $a = \frac{\Delta v}{t} = \frac{1}{4} [(10\mathbf{i} + 9\mathbf{j}) - (2\mathbf{i} - 3\mathbf{j})] = 2\mathbf{i} + 3\mathbf{j}$	M1 A1				
	. /	mag. of $a = \sqrt{(2^2 + 3^2)} = \sqrt{13} = 3.61 \text{ ms}^{-2} (3\text{sf})$	M1 A1				
		(ii) $F = ma = 2(2i + 3j) = 4i + 6j$	M1				
		req'd angle = $\tan^{-1} \frac{3}{2} = 56.3^{\circ} (3sf)$	M1 A1	(9)			
3.	(a)	particle $R \triangleright P_{\bullet}$	B1				
	<i>(b)</i>	α $3g$					
		resolve // to plane: $P \cos 10^\circ - 3g \sin \alpha = 0$	M1 A1				
3.		$P \cos 10^\circ = 3g(\frac{3}{5}) \therefore P = 17.9 (1dp)$	M1 A1				
	(c)	resolve perp. to plane: $R + P \sin 10^\circ - 3g \cos \alpha = 0$	M1 A1				
		$R = 3g(\frac{4}{5}) - P\sin 10^\circ = 20.4 \text{ N} (1 \text{ dp})$	M1 A1	(9)			
4.	(a)	cons. of mom. $0.05(400) = (0.05 + 4.95)v$	M2				
		$20 = 5v \therefore v = 4 \text{ ms}^{-1}$	A1				
	<i>(b)</i>	$R = mg; \ ^{-}F = ma$	M1				
		but $F = \mu R$; $\therefore a = \frac{-\mu R}{m} = \frac{-\mu mg}{m} = -\mu g$	M1 A1				
		use with $u = 4, v = 0, s = 4$	M1				
		$v^2 = u^2 + 2as$, so $0 = 16 - 8\mu g$	M1	(0)			
		$\mu = \frac{16}{8g} = \frac{2}{g}$	A1	(

www.dynamicpapers.com

5.	(a)	disp. of F rel to G = $[(2t-3)-2]\mathbf{i} + (t-5)\mathbf{j} = (2t-5)\mathbf{i} + (t-5)\mathbf{j}$	M1 A1	
	<i>(b)</i>	$d^{2} = (2t-5)^{2} + (t-5)^{2}$ = $4t^{2} - 20t + 25 + t^{2} - 10t + 25 = 5t^{2} - 30t + 50$ = $5(t^{2} - 6t + 10) = 5[(t-3)^{2} + 1]$ min. d^{2} (and hence d) when $t = 3$	M1 M1 A1 M2 A1	
	(c)	when $t = 3$, $d^2 = 5$ dist. = $\sqrt{5} = 2.24$ m (3sf)	M1 A1 A1	(11)

6.	(a)	speed $(ms^{-1}) 5U$		
		$\frac{2U}{O} = \frac{1}{6} $ time (seconds)	B2	
	(b)	using $v = u + at$ with $v = 2U$, $u = 5U$, $t = 6$ gives 1^{st} decel. $= \frac{1}{2} U \text{ m s}^{-2}$	M1 A1	
		using $v = u + at$ with $v = 0$, $u = 2U$, $t = 2$ gives 2^{nd} decel. $= U \text{ ms}^{-2}$	M1 A1	
	(c)	(c) area under graph = dist. travelled = 220 m		
		$\frac{1}{2}(6)(3U) + 22(2U) + \frac{1}{2}(2)(2U) = 220$	M1 A2	
		$55U = 220$: $U = 4 \text{ ms}^{-1}$	M1 A1	(12)

$$R_T$$
 T D

7.

(a)	$M_C: M_T = 1200: 800 = 3: 2$ $R_C = 300$ N $\therefore R_T = 200$ N	M1 A1	
<i>(b)</i>	for car and trailer, eqn. of motion is $3000 - 500 = 2000a$ giving $a = \frac{5}{4}$ ms ⁻²	M1 M1 A1	
(c)	for car, eqn. of motion is $3000 - 300 - T = 1200 \times \frac{5}{4}$ giving $T = 1200$ N	M1 M1 A1	
(d)	total of braking + resistive forces = 1500 N $^{-1500} = 2000a$ so $a = ^{-\frac{3}{4}} \text{ ms}^{-2}$ $u = 24, v = 0, a = ^{-\frac{3}{4}} \text{ use } v^2 = u^2 + 2as$ $0 = 576 - \frac{3}{2}s \therefore s = 384 \text{ m}$	M1 A1 M1 M1 A1	
(e)	for car (\leftarrow): $T + 1000 + 300 = 1200(\frac{3}{4})$ $T = -400 \text{ N}$ \therefore $T = 400 \text{ N}$, pushing the car	M1 A1 M1 A1	(10)
(f)	e.g. unlikely to be realistic, likely to decrease as speed decreases	B2	(19)

Total (75)

Performance Record – M1 Paper G

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	moments	i , j , F = ma	statics	cons. of mom., friction	rel. posn. i, j	speed - time graph, uniform accel.	connected bodies	
Marks	6	9	9	9	11	12	19	75
Student								