FOR EDEXCEL

GCE Examinations Advanced Subsidiary

Core Mathematics C4

Paper F

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

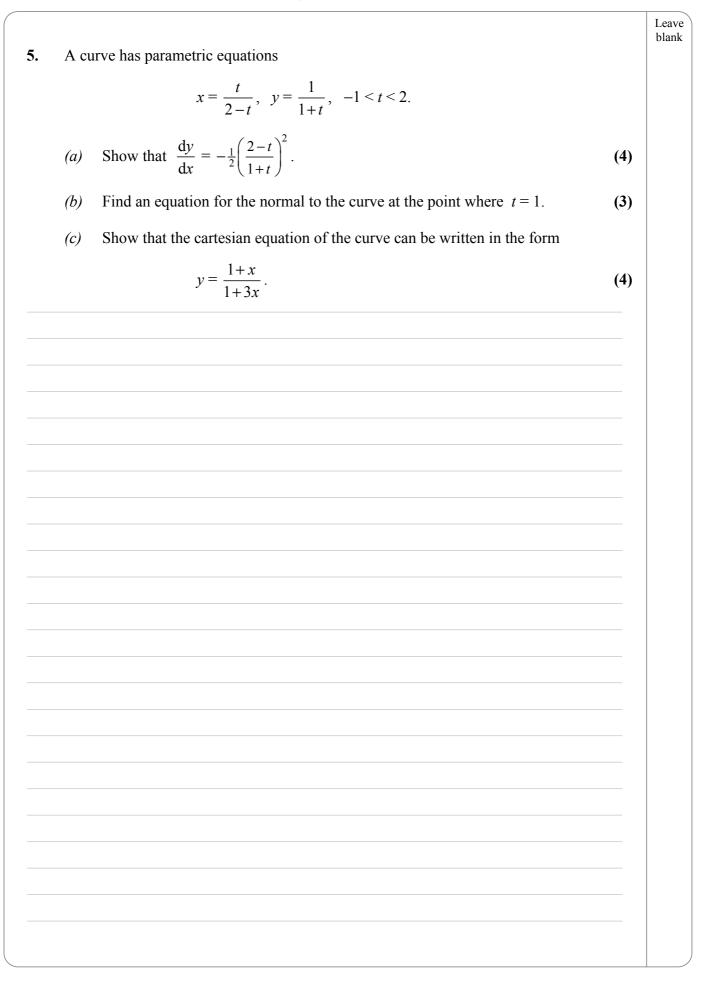
Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

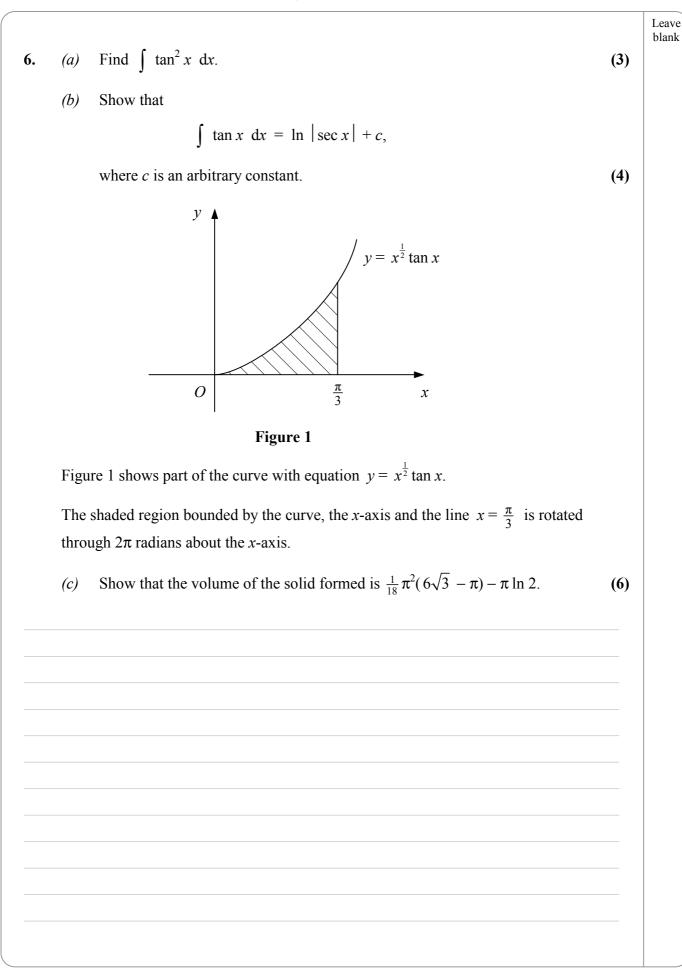
Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

			Leave
1.	A curve has the equation		blank
	$2x^2 + xy - y^2 + 18 = 0.$		
	Find the coordinates of the points where the tangent to the curve is parallel	(0)	
	to the <i>x</i> -axis.	(8)	
			+



				Leave blank
3.	(a)	Show that $(1\frac{1}{24})^{-\frac{1}{2}} = k\sqrt{6}$, where k is rational.	(2)	
	<i>(b)</i>	Expand $(1 + \frac{1}{2}x)^{-\frac{1}{2}}$, $ x < 2$, in ascending powers of x up to and including the term in x^3 , simplifying each coefficient.	(4)	
	(c)	Use your answer to part (b) with $x = \frac{1}{12}$ to find an approximate value for $\sqrt{6}$, giving your answer to 5 decimal places.	(3)	


3	continued	Leaveblank
_		

				L
۱.	Rela	tive to a fixed origin, two lines have the equations		b
		$\mathbf{r} = (7\mathbf{j} - 4\mathbf{k}) + s(4\mathbf{i} - 3\mathbf{j} + \mathbf{k}),$		
	and	$\mathbf{r} = (-7\mathbf{i} + \mathbf{j} + 8\mathbf{k}) + t(-3\mathbf{i} + 2\mathbf{k}),$		
	when	re <i>s</i> and <i>t</i> are scalar parameters.		
	(a)	Show that the two lines intersect and find the position vector of the point where they meet.	(5)	
	(b)	Find, in degrees to 1 decimal place, the acute angle between the lines.	(4)	

4. continued	Leave blank

5. continued	

6. continu	ued	Leave blank
		1

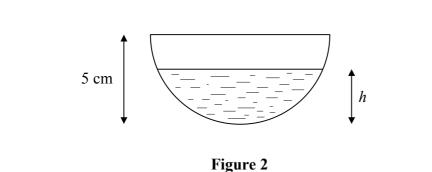


Figure 2 shows a hemispherical bowl of radius 5 cm.

The bowl is filled with water but the water leaks from a hole at the base of the bowl. At time t minutes, the depth of water is h cm and the volume of water in the bowl is $V \text{ cm}^3$, where

$$V = \frac{1}{3}\pi h^2(15-h).$$

In a model it is assumed that the rate at which the volume of water in the bowl decreases is proportional to V.

(a) Show that

7.

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{kh(15-h)}{3(10-h)},$$

where *k* is a positive constant.

(5)

(3)

Leave blank

(b) Express
$$\frac{3(10-h)}{h(15-h)}$$
 in partial fractions. (3)

Given that when t = 0, h = 5,

(c) show that

$$h^2(15-h) = 250 \,\mathrm{e}^{-kt}.\tag{6}$$

Given also that when t = 2, h = 4,

(d) find the value of k to 3 significant figures.

	Leav
7. continued	blan
7. continued	

7. continued	Leave blank
END	