GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper F MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

www.dynamicpapers.com

M1 Paper F – Marking Guide

1.	(a)	resolve \uparrow : $R\cos 15 - 4g = 0$	M2	
		$R = \frac{4g}{\cos 15} = 40.6 \text{ N} (3 \text{ sf})$	M1 A1	
	(b)	resolve // to slope: $F\cos 15 - 4g\sin 15 = 0$ $F = 4g\tan 15 = 10.5$ N	M1 M1 A1	(7)
2.	(a)	cons. of mom.: $2u = 0.03 (100)$ $u = 1.5 \text{ ms}^{-1}$	M2 A1	
	(b)	$v^2 = u^2 + 2as$ so $0 = 6400 + 2a(0.02)$ $a = -160000 \text{ ms}^{-2}$ so $F = 0.03$ (-160000) = 4800 N (opp. dir ^{n.} to bullet)	M1 A1 M1 A1	(7)
3.	(a)	moments about A (anticlockwise +ve) = $3(2) - 2(2)$ = 2 Nm (anticlockwise)	M2 A1	
	<i>(b)</i>	dist. of X from D is $2\sqrt{2}$ (by Pythagoras) moments about D: $X(2\sqrt{2}) = 5(2) + 3(2)$ $X = \frac{8}{\sqrt{2}} = 4\sqrt{2}$	M1 M1 M1 A1	(7)

4.

5.

(a)	resolve \downarrow for man: $90g - R = 90(0.5)$ so $R = 837$ N	M2 A1	
(b)	resolve \downarrow for lift: $R + 70g - T = 70(0.5)$ 837 + 686 - $T = 35$ so $T = 1488$ N	M2 A1 A1	
(c)	impulse = Δ mom. = 160(0 - 2) = 320 Ns	M1 A1	
(d)	$Ft = 320$, so $F = \frac{320}{2} = 160$ N	M1 A1 (11)	
(a)	initially, A is at 6i and travels $(-4T\mathbf{i} + T\mathbf{j})$ km in T hours T hours after midday, A is at $(6 - 4T)\mathbf{i} + T\mathbf{j}$ km initially B is at 3j and travels $(4T\mathbf{i} - 3T\mathbf{j})$ km in T hours T hours after midday, B is at $4T\mathbf{i} + (3 - 3T)\mathbf{j}$ km	M2 A1 M2 A1	•
(b)	pos ^{n.} B rel. to A is $[4T - (6 - 4T)]\mathbf{i} + [(3 - 3T) - T]\mathbf{j}$ i.e. $[(8T - 6)\mathbf{i} + (3 - 4T)\mathbf{j}]$ km	M1 A1	
(c)	they will collide if coeffs. of i and j in part (<i>b</i>) are both zero $8T - 6 = 0$ and $3 - 4T = 0$ are both satisfied when $T = \frac{3}{4}$ i.e. collision at 12:45 p.m.	M1 A1 A1 (11)	

www.dynamicpapers.com

6.	(a)	$u = 0, s = 2200 - 240 = 1960, a = 9.8$ use $v^2 = u^2 + 2as$ $v^2 = 0 + 2(9.8)(1960)$ so $v = 196 \text{ ms}^{-1}$	M2 M1 A1	
	<i>(b)</i>	$s = ut + \frac{1}{2}at^2$	M1	
		$1960 = 0 + 4.9t^2 \implies t = 20 \text{ seconds}$	MIAI	
	(c)	140 - 20 = 120 seconds to travel 240 m speed = 2 ms ⁻¹	M1 A1	
	(d)	e.g. no air resistance; velocity on opening parachute will not immediately reduce e.g. if air resistance included value in (a) would be much lower	B2	
		and consequently value in (b) much higher	B2	(13)

7.

(a)	$\sin \alpha = \frac{3}{5}$ (3,4,5 Pythag. triple) so $\cos \alpha = \frac{4}{5}$	B1
	resolve perp. to plane: $R - mg\cos\alpha = 0$ so $R = \frac{4}{5}mg$	M1 A1
	$F = \mu R = \frac{1}{5} mg$	M1 A1
	Resolve up the plane: $F - mg \sin \alpha = ma$	M1
	$-\frac{1}{5}mg - \frac{3}{5}mg = ma$ so $a = -\frac{4}{5}g$	A1
	i.e. $a = \frac{4}{5}g$ and is directed down the slope	A1
(b)	$u = 20, v = 0, a = -\frac{4}{5}g$ use $v^2 = u^2 + 2as$	M1
	$0 = 400 - \frac{8}{5}gs \implies s = 25.51 \text{ m}, \text{ i.e. } 4.49 \text{ m} \text{ (nearest cm) from top}$	M2 A1
(c)	friction now acts up slope but R (and hence F) as in part (a)	B1
	$mg\sin\alpha - F = ma \Rightarrow \frac{3}{5}mg - \frac{1}{5}mg = ma$	M2
	$a=\frac{2}{5}g$	A1
	$u = 0, s = 25.51, a = \frac{2}{5}g, s = ut + \frac{1}{2}at^2$	M1
	$25.51 = \frac{1}{5}gt^2$ i.e. $t = 3.61$ seconds	M1 A1 (19)

Total (75)

Performance Record – M1 Paper F

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	statics,	cons. of mom., F = ma	moments	connected bodies	i, j , rel. posn.	accel time graph	uniform accel., friction	
Marks	7	7	7	11	11	13	19	75
Student								