### GCE Examinations Advanced Subsidiary / Advanced Level

## Statistics Module S2

# Paper E MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.



Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

| 1. | (a)        | advantage – e.g. more accurate<br>disadvantage – e.g. takes longer                                                                                                                                                                                                                                                                      | B1<br>B1                   |      |
|----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------|
|    | <i>(b)</i> | e.g. getting views of shop staff on changing opening hours<br>as small no. involved and will affect all so need views of all                                                                                                                                                                                                            | B2                         | (4)  |
| 2. | (a)        | let X = no. of bags in F.P. with scratchcard $\therefore X \sim B(10, \frac{1}{10})$<br>P(X = 0) = 0.3487                                                                                                                                                                                                                               | M1<br>A1                   |      |
|    | (b)        | $P(X > 2) = 1 - P(X \le 2) = 1 - 0.9298 = 0.0702$                                                                                                                                                                                                                                                                                       | M1 A1                      |      |
|    | (c)        | let $Y = \text{no. of bags in box with scratchcard}$ $\therefore Y \sim B(50, \frac{1}{10})$<br>$H_0: p = \frac{1}{10}$ $H_1: p < \frac{1}{10}$<br>$P(X \le 2) = 0.1117$<br>more than 10% $\therefore$ not significant, insufficient evidence of lower prop <sup>n</sup>                                                                | M1<br>B1<br>M1<br>A1       | (8)  |
| 3. | (a)        | continuous uniform                                                                                                                                                                                                                                                                                                                      | B1                         |      |
|    | <i>(b)</i> | $F(t) = \int_{-4}^{t} \frac{1}{8} dx$<br>= $\frac{1}{8} [x]_{-4}^{t} = \frac{1}{8} (t+4)$                                                                                                                                                                                                                                               | M1<br>M1 A1                |      |
|    |            | $F(x) = \begin{cases} 0, & x < -4, \\ \frac{1}{8}(x+4), & -4 \le x \le 4, \\ 1, & x > 4. \end{cases}$                                                                                                                                                                                                                                   | A1                         |      |
|    | (c)        | $= P(-1.5 \le x \le 1.5)$<br>= 3 × $\frac{1}{8} = \frac{3}{8}$                                                                                                                                                                                                                                                                          | M1<br>M1 A1                |      |
|    | (d)        | e.g. gives zero prob. of more than 4 cm error and doesn't suggest higher prob. density near 0 as would be likely                                                                                                                                                                                                                        | В2                         | (10) |
| 4. | (a)        | binomial, $n = 10, p = \frac{1}{2}$                                                                                                                                                                                                                                                                                                     | B2                         |      |
|    | (b)        | <i>p</i> would vary                                                                                                                                                                                                                                                                                                                     | B1                         |      |
|    | (c)        | (i) let $X = \text{no. of blue beads}$ $\therefore X \sim B(10, \frac{1}{2})$<br>$P(X = 5) = 0.6230 - 0.3770 = 0.2460 \ [0.2461 \ (4sf) \text{ using } {}^{10}\text{C}_{5}]$<br>(ii) let $Y = \text{no. of red beads}$ $\therefore Y \sim B(10, \frac{1}{8})$<br>P(X > 0) = 1 - P(X = 0)<br>$= 1 - (\frac{7}{8})^{10} = 0.7369 \ (4sf)$ | M1 A1<br>M1<br>M1<br>M1 A1 |      |
|    | (d)        | let $R = \text{no. of red beads in } n \text{ picks } \therefore R \sim B(n, \frac{1}{8})$<br>$P(R > 0) > 0.99  \therefore P(R = 0) < 0.01  \therefore \left(\frac{7}{8}\right)^n < \frac{1}{100}$                                                                                                                                      | M2 A1                      | (12) |

#### S2 Paper E – Marking Guide

| 5. | (a)        | let $X =$ no. of donations over £10000 per year $\therefore X \sim Po(25)$                                          | M1       |      |
|----|------------|---------------------------------------------------------------------------------------------------------------------|----------|------|
|    |            | $P(X=30) = \frac{e^{-25} \times 25^{30}}{30!} = 0.0454 \text{ (3sf)}$                                               | M1 A1    |      |
|    | <i>(b)</i> | let $Y =$ no. of donations over £10000 per month $\therefore Y \sim Po(\frac{25}{12})$                              | M1       |      |
|    |            | $P(Y < 3) = P(Y \le 2)$                                                                                             | M1       |      |
|    |            | $= e^{-\frac{25}{12}} \left(1 + \frac{25}{12} + \frac{\left(\frac{25}{12}\right)^2}{2}\right)$                      | M1 A1    |      |
|    |            | = 0.6541 (4sf)                                                                                                      | A1       |      |
|    | (c)        | let $D = \text{no. of donations over } \pounds 10000 \text{ per } 2 \text{ years } \therefore D \sim \text{Po}(50)$ | M1       |      |
|    |            | N approx. $E \sim N(50, 50)$                                                                                        | M1       |      |
|    |            | $P(D > 45) \approx P(E > 45.5)$                                                                                     | M1       |      |
|    |            | $= P(Z > \frac{45.5 - 50}{\sqrt{50}}) = P(Z > 0.64)$                                                                | A1       |      |
|    |            | = 0.7389                                                                                                            | A1       | (13) |
| 6. | (a)        | = P(T > 2) = 1 - F(2)                                                                                               | M1       |      |
|    |            | $= 1 - \frac{1}{135} \left( 108 + 36 - 32 \right) = \frac{23}{135}$                                                 | M1 A1    |      |
|    | <i>(b)</i> | $\mathbf{F}(m) = \frac{1}{2}$                                                                                       | M1       |      |
|    |            | F(1.1) = 0.4812; F(1.2) = 0.5248                                                                                    | M1       |      |
|    |            | $\therefore 1.1 < m < 1.2$ $\therefore$ median between 11 and 12 minutes                                            | A1       |      |
|    | (c)        | $f(t) = F'(t) = \frac{1}{135} (54 + 18t - 12t^2)$                                                                   | M1 A1    |      |
|    |            | $f(t) = \begin{cases} \frac{2}{45} (9 + 3t - 2t^2), & 0 \le t \le 3, \\ 0, & \text{otherwise.} \end{cases}$         | A1       |      |
|    |            | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ otherwise.                                                                   |          |      |
|    | (d)        | $f'(t) = \frac{2}{45} (3 - 4t)$                                                                                     | M1       |      |
|    |            | S.P. when $f'(t) = 0 :: t = \frac{3}{4}$                                                                            | M1       |      |
|    |            | some justification e.g. –ve quadratic $\therefore$ mode = $\frac{3}{4} \times 10 = 7.5$ mins                        | M1 A1    |      |
|    | (e)        | e.g. assumes patients never wait for more than 30 mins                                                              | B1       | (14) |
| 7. | (a)        | Poisson<br>e.g. reasonable to suggest bicycles passing will occur singly,<br>at random and at constant rate         |          |      |
|    |            |                                                                                                                     |          |      |
|    | <i>(b)</i> | $n = 36$ , $\Sigma f x = 54$ , $\therefore$ mean $= \frac{54}{36} = 1.5$                                            | M1 A1    |      |
|    |            | $\Sigma f x^2 = 0 + 14 + 40 + 18 + 16 + 50 = 138$                                                                   | A1       |      |
|    |            | variance = $\frac{138}{36} - 1.5^2 = 1.58$ (3sf)                                                                    | M1 A1    |      |
|    |            | values support Poisson as expect mean $\approx$ variance                                                            | B1       |      |
|    | (c)        | let X = no. of bicycles passing per 30-mins $\therefore X \sim Po(9)$                                               | M1       |      |
|    |            | $H_0: \lambda = 9  H_1: \lambda > 9$                                                                                | B1       |      |
|    |            | $P(X \ge 16) = 1 - P(X \le 15)$<br>= 1 - 0.9780 = 0.0220                                                            | M1<br>A1 |      |
|    |            | less than 5% $\therefore$ significant, evidence of more bicycles                                                    | AI<br>Al | (14) |
|    |            |                                                                                                                     |          | X 77 |
|    |            |                                                                                                                     | Total    | (75) |

Total (75)

| Question no. | 1        | 2                      | 3                      | 4        | 5                     | 6                                     | 7                      | Total |
|--------------|----------|------------------------|------------------------|----------|-----------------------|---------------------------------------|------------------------|-------|
| Topic(s)     | sampling | binomial,<br>hyp. test | rect. dist.,<br>c.d.f. | binomial | Poisson,<br>N approx. | c.d.f.,<br>median,<br>p.d.f.,<br>mode | Poisson,<br>hyp. test. |       |
| Marks        | 4        | 8                      | 10                     | 12       | 13                    | 14                                    | 14                     | 75    |
| Student      |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
|              |          |                        |                        |          |                       |                                       |                        |       |
| L            | 1        | 1                      | 1                      | 1        | 1                     | 1                                     | 1                      |       |

### Performance Record – S2 Paper E