GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

Paper E MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper E – Marking Guide

1.	(a)

1.	(a)		Studio	Live	Total				
		Jazz	(13)	3	(16)				
		Blues	9	5	14				
		Total	22	(8)	(30)			A2	
	<i>(b)</i>	$\frac{5}{30} = \frac{1}{6}$						A1	
	(c)	$\frac{13}{22}$						M1 A1	(5)
2.	(a)	Discrete Un	iform	B1					
	<i>(b)</i>	R = 10Q + 4						A2	
	(c)	E(R) = (10 > Var(R) = 10	(3) + 4 = 34 $(2)^{2} \times 2 = 200$	M1 A1 M1 A1	(7)				
3.	(a)	$P(Z < \frac{45-42}{\sqrt{18}})$	$(2^{2}) = P(Z < 0)$	M2 A1					
	(b)	$P(\frac{32-42}{\sqrt{18}} < 2)$	$Z < \frac{38-42}{\sqrt{18}}$)	M2					
		= P(Z < T)	(0.94) - P(Z)	M1 A1					
	(c)	$P(Z < \frac{x-42}{\sqrt{18}})$	$() = 0.95; \frac{x}{2}$	M1 A1					
		x = 42 + (1.6)	5449 × √18)	= 49.0				M1 A1	(11)
4.							M1		
		median = 15	$50^{\text{tn}} = 40 + 20$	$O(\frac{22}{74}) = 45.$.9 [150.5 ^u	$\rightarrow 46$.1]	M1 A1	
	<i>(b)</i>	middle 80%						B1	
		$P_{10} = 30^{\text{th}} = 10^{10}$	20					M1	
		$P_{90} = 270^{\text{th}} =$	= 200 + 100(M1					
		∴ limits are	17 and 256	A2					
	(c)	e.g. data v.		DA					
			affect media better, most	B2 B1	(11)				
	()								
5.	(a)	У	0	1 2	3	4			
		$\mathbf{P}(Y=y)$	0.05	0.1 0.2	0.4	0.25		M1 A1	
	(b)	$(b) \qquad 0.1 + 0.2 = 0.3$						M1 A1	
	(c)	$\sum y \mathbf{P}(y) = 0$	+ 0.1 + 0.4 +	M1 A1					
	(d)	$(2 \times 2.7) + 4$	l = 9.4	M1 A1					
	(e)	$E(Y^2) = \sum y^2$ Var(Y) = 8.5	• /	M1 A1 M1 A1	(12)				
		var(1) = 8.3	$y = (2.7)^{2} = 1$.21	MI AI	(12)			

www.dynamicpapers.com

6.	(a)	$0.45 \times 0.6 = 0.27$	M1 A1		
	<i>(b)</i>	$1 - (0.45 \times 0.4 \times 0.6) = 1 - 0.108 = 0.892$	M2 A1		
	(c)	$P(\text{passed } 1^{\text{st}} \text{ time } \text{ passed}) = \frac{P(\text{passed } 1^{\text{st}} \text{ time } \cap \text{ passed})}{P(\text{passed})}$ $= \frac{0.55}{0.892} = 0.617 \text{ (3sf)}$	M2 A1		
	(d)	200 1 st time, 120 2 nd time, 80 3 rd time no. expected to pass = $(200 \times 0.55) + (120 \times 0.6) + (80 \times 0.4)$ = 110 + 72 + 32 = 214	A1 M2 A1	(12)	
7.	(a)	n = 120 110 100 100 90 80 70 15 17 19 21 23 25 h	Β4		
	<i>(b)</i>	$S_{hn} = 17204 - \frac{180 \times 875}{9} = -296$ $S_{hh} = 3660 - \frac{180^2}{9} = 60$ $b = \frac{-296}{60} = -4.9333$ $a = \frac{875}{9} - [-4.9333 \times \frac{180}{9}] = 195.888$ h = 195.9 - 4.93h	M1 M1 M1 A1 M1 A1 A1		
	(c)	no. of clinches decreases by 4.93 per hour awake	B1		
	(d)	B2			
	(e)	195.9 - 4.93h = 213.4 - 5.87h 0.94h = 17.5; h = 18.6 hours	M1 M1 A1	(17)	
			Total	(75)	

1	2	3	4	5	6	7	Total
probability	discrete uniform dist.	normal dist.	interpol'n, inter- percentile range	discrete r. v.	probability	scatter diagram, regression	
5	7	11	11	12	12	17	75
	probability	probability discrete uniform dist.	probability discrete normal dist. dist.	probability discrete uniform dist. dist. dist. inter- percentile range	probability discrete uniform dist. normal interpol'n, inter- dist. dist. gercentile range discrete r. v.	probability discrete uniform dist. dist. interpol'n, discrete percentile range r. v. probability	probability discrete uniform dist. normal dist. interpol'n, inter-percentile range discrete r. v. probability regression

Performance Record – S1 Paper E