GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M2

Paper C MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

M2 Paper C – Marking Guide

1.	(a)	$\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = 6t\mathbf{i} - 8t\mathbf{j}$	M1 A1	
1.	<i>(u)</i>			
		$\mathbf{a} = \frac{d\mathbf{v}}{dt} = 6\mathbf{i} - 8\mathbf{j}$ not dependent on <i>t</i> so constant	M1 A1	
	<i>(b)</i>	$\mathbf{F} = m\mathbf{a} = 2\mathbf{a} = 12\mathbf{i} - 16\mathbf{j}$	A1	
		mag. of $\mathbf{F} = \sqrt{[(12)^2 + (-16)^2]} = 20 \text{ N}$	M1 A1	(7)
2.	(a)	X-sect. area of pipe = $\pi r^2 = \pi (0.05)^2$	M1 A1	
2.	(4)	mass of water per second = $6 \times 0.0025\pi \times 1000 = 15\pi$	M1 A1	
	<i>(b)</i>	energy gained = $\frac{1}{2}mv^2 + mgh = \frac{15}{2}\pi(6)^2 + (150\pi \times 9.8 \times 12)$	M2 A1	
		= 6390 J = 6.39 kJ (3 sf)	A1	(8)
3.	(a)	when $t = 0$, $v = 4 \text{ ms}^{-1}$	A1	
	<i>(b)</i>	particle at rest when $2t^2 - 9t + 4 = 0$ i.e. $(2t - 1)(t - 4) = 0$	M1 A1	
		$t = \frac{1}{2}, 4$	A1	
	(c)	$s = \int v dt = \frac{2}{3} t^3 - \frac{9}{2} t^2 + 4t + c$	M1 A1	
	(c)	$s = \int v dt = \frac{2}{3} t^3 - \frac{9}{2} t^2 + 4t + c$ when $t = 0, s = 9$ so $c = 9$ $\therefore s = \frac{2}{3} t^3 - \frac{9}{2} t^2 + 4t + 9$	M1 A1 A1	
	(c)	J		
	(c)	when $t = 0$, $s = 9$ so $c = 9$ $\therefore s = \frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t + 9$	A1	(9)

 $rightharpoonup \frac{1}{2}S$ *S* ◄ mg *R* **↑** / $\frac{1}{3}R$

resolve \uparrow : $\frac{1}{2}S + R - mg = 0$	M1
resolve \rightarrow : $\frac{1}{3}R - S = 0$	M1
solve simul. giving $S = \frac{1}{3}R$ \therefore $R = \frac{6}{7}mg$	M1 A1
mom. about top of ladder $R.2a\cos\theta - \frac{1}{3}R.2a\sin\theta - mg.a\cos\theta = 0$	M1 A1
$\therefore \tan \theta = \frac{2R - mg}{\frac{2}{3}R} = \frac{5}{4}$	M2 A1 (9)

www.dynamicpapers.com

5.	(a)	vert. disp. = 0 $\therefore 8u_y - \frac{1}{2}g(8)^2 = 0$	M1 A1	
		$u_y = \frac{1}{2}g(8) = 4g$	A1	
$u_{y} = \frac{1}{2} g(8) = 4g$ horiz. disp. = 24 $\therefore 8u_{x} = 24$ (b) initial speed = $\sqrt{[(4g)^{2} + 3^{2}]}$ (c) max. ht. when vert. vel = 0 \therefore max. ht. = 8g = 78.4 m (d) e.g. small X-section, reason but, significant loss of n 6. (a) cons. of mom: $3mu + 0 = 3$. $\therefore 3v_{1} + 2v_{2} = 3u$ $\frac{v_{2}-v_{1}}{u} = \frac{2}{3} \therefore 3v_{2} - 3v_{1} = 2u$ solve simul. giving $v_{1} = \frac{1}{3}$	horiz. disp. = $24 \therefore 8u_x = 24$ so $u_x = 3$	M1 A1		
	<i>(b)</i>	initial speed = $\sqrt{[(4g)^2 + 3^2]} = 39.3 \text{ ms}^{-1}$ (3sf)	M1 A1	
	(c)	max. ht. when vert. vel = 0 $\therefore 0 = (4g)^2 - 2gs$ \therefore max. ht. = 8g = 78.4 m	M1 A1 A1	
	(d)	e.g. small X-section, reasonable to treat as particle and ignore air res. but, significant loss of mass during flight : model not very suitable	B3	(13)
6.	(a)	cons. of mom: $3mu + 0 = 3mv_1 + 2mv_2$ $\therefore 3v_1 + 2v_2 = 3u$	M1 A1	
		$\frac{v_2 - v_1}{u} = \frac{2}{3} \therefore 3v_2 - 3v_1 = 2u$	M1 A1	
		solve simul. giving $v_1 = \frac{1}{3}u$ and $v_2 = u$	M1 A1	
	<i>(b)</i>	cons. of mom: $2mu + 0 = 2mw_1 + 2mw_2$ $w_1 + w_2 = u$	M1 A1	
		$\frac{w_2-w_1}{u} = e \therefore w_2-w_1 = eu$	A1	
		solve simul. giving $w_1 = \frac{1}{2}u(1-e)$	M1 A1	
		A and B collide again so speed of $B <$ speed of A	M1	
		$\frac{1}{2}u(1-e) < \frac{1}{3}u$ so $\frac{1}{2}e > \frac{1}{2} - \frac{1}{3}$ $\therefore e > \frac{1}{3}$	M1 A1	(14)
7.	(a)	from triangle properties, area of $BCD = \frac{1}{3}$ area of ABD	B1	

 $\therefore \text{ area of } BCD = \frac{1}{3} \left(\frac{1}{2} \times 2d \times \sqrt{3}d \right) = \frac{1}{3} \sqrt{3}d^2$

(b)

portion	mass	У	my
ABD	$\sqrt{3}d^2\rho$	$\frac{1}{3}\sqrt{3}d$	$d^{3}\rho$
BCD	$\frac{1}{3}\sqrt{3}d^2\rho$	$\frac{1}{9}\sqrt{3}d$	$\frac{1}{9}d^3\rho$
ABCD	$\frac{2}{3}\sqrt{3}d^2\rho$	\overline{y}	$\frac{8}{9}d^3\rho$

A

ρ = mass per unit area	y coords. taken vert. from <i>BD</i>	M3 A3
$\overline{y} = \frac{\frac{8}{9}d^3\rho}{\frac{2}{3}\sqrt{3}d^2\rho} = \frac{4d}{3\sqrt{3}} = \frac{4}{9}$	$\sqrt{3}d$	M1 A1

(c)

$$D = \tan^{-1} \frac{\frac{4}{9}\sqrt{3}d}{d} = \tan^{-1} \frac{4\sqrt{3}}{9}$$
M1 A1
req'd angle = 60 - θ = 22.4° (1dp)
M1 A1 (15)

Total (75)

M1 A1

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	i, j calculus	KE + PE	variable accel.	statics ladder prob.	projectiles	collisions	centre of mass	
Marks	7	8	9	9	13	14	15	75
Student								
<u> </u>								

Performance Record – M2 Paper C