FOR EDEXCEL

GCE Examinations Advanced Subsidiary

Core Mathematics C4

Paper B

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has eight questions.

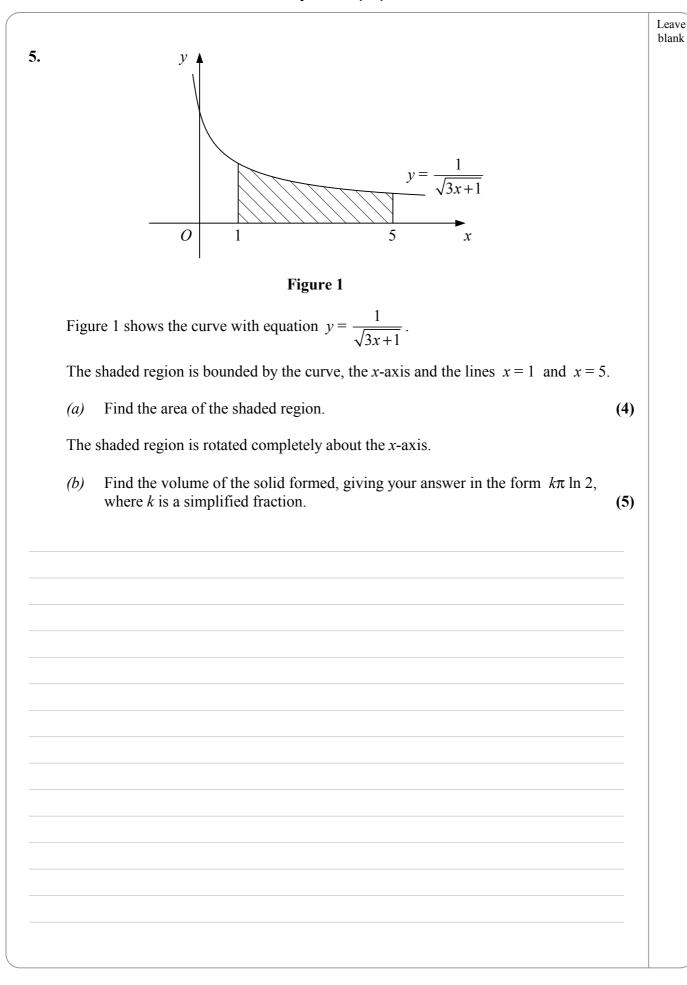
Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

		Leave blank
1.	Use integration by parts to find	
	$\int x^2 \sin x \mathrm{d}x.$	6)
		_
		_
		_
		_
		_
		_
		_
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-


		Lea ⁻ blar
2. Given that $y = -2$ when $x = 1$, solve the differential equation		
$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 \sqrt{x} \; ,$		
giving your answer in the form $y = f(x)$.	(7)	

		Leave blank
3.	A curve has the equation	
	$4x^2 - 2xy - y^2 + 11 = 0.$	
	Find an equation for the normal to the curve at the point with coordinates $(-1, -3)$. (8)	

3.	continued	Leave blank

Leave blank Expand $(1 + ax)^{-3}$, |ax| < 1, in ascending powers of x up to and including the term in x^3 . Give each coefficient as simply as possible in terms of the 4. *(a)* constant a. (3) Given that the coefficient of x^2 in the expansion of $\frac{6-x}{(1+ax)^3}$, |ax| < 1, is 3, find the two possible values of *a*. *(b)* (4) Given also that a < 0, show that the coefficient of x^3 in the expansion of $\frac{6-x}{(1+ax)^3}$ is $\frac{14}{9}$. (c) (2)

~	4. continued	Leave blank

5.	continued	Leave blank
		1

6.

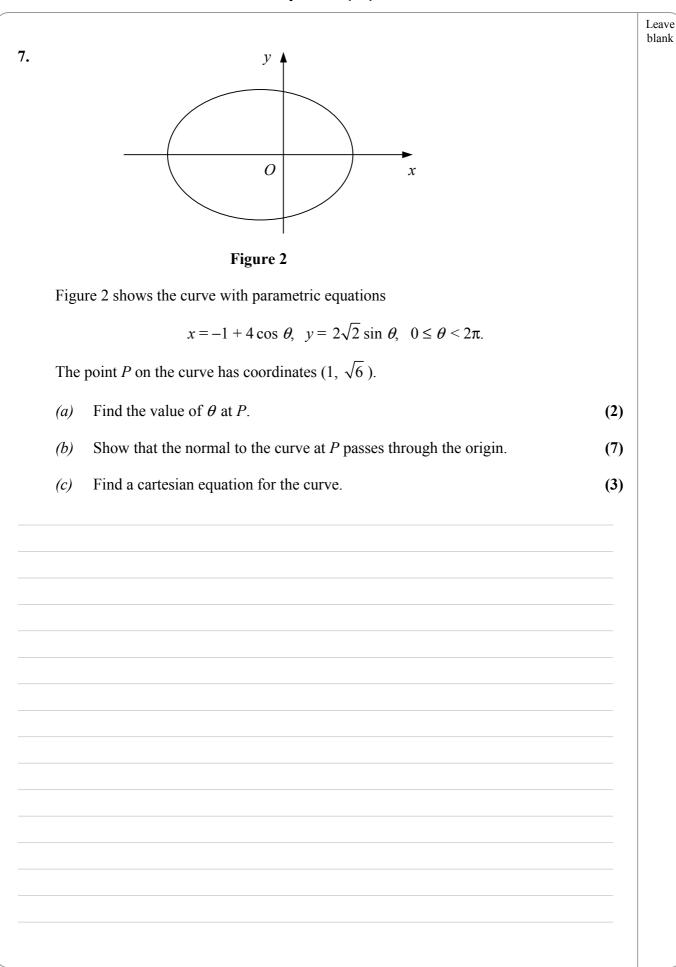
$$f(x) = \frac{15 - 17x}{(2 + x)(1 - 3x)^2}, \quad x \neq -2, \quad x \neq \frac{1}{3}.$$

(a) Find the values of the constants A, B and C such that

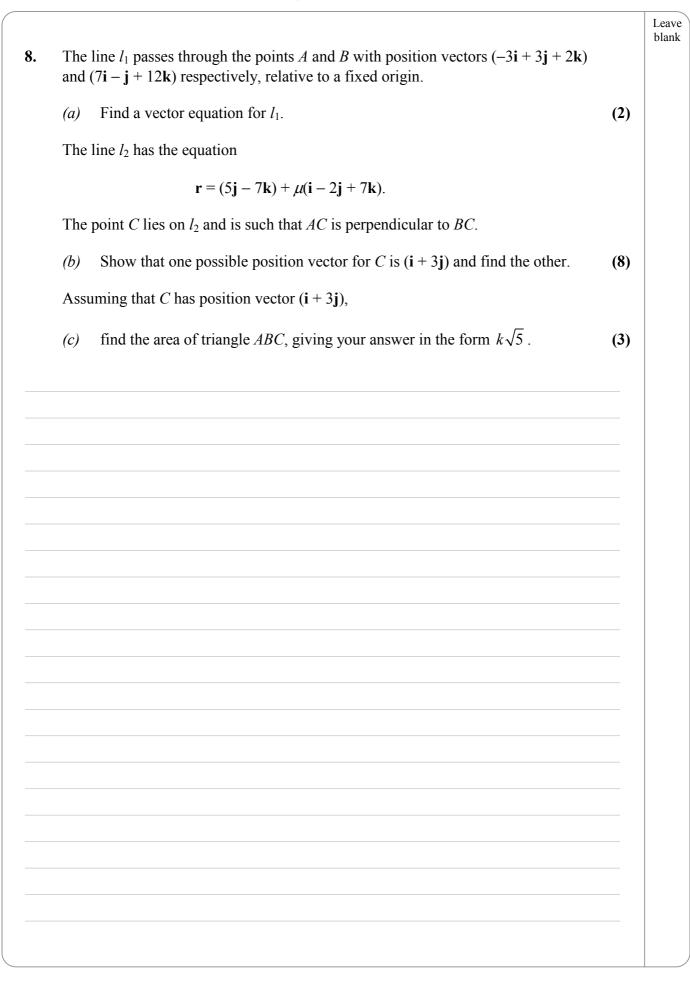
$$f(x) = \frac{A}{2+x} + \frac{B}{1-3x} + \frac{C}{(1-3x)^2}.$$
 (4)

(b) Find the value of

 $\int_{-1}^0 f(x) dx,$


giving your answer in the form $p + \ln q$, where p and q are integers.

(7)


Leave blank

© Solomon Press

6. continued	blar

7. continued	blank

		Leave
8.	continued	blank
0.	continued	

8. continued	Leave blank
END	