GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper B MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

www.dynamicpapers.com

M1 Paper B – Marking Guide

1.	(a)	$\boldsymbol{a} = \frac{\Delta \boldsymbol{v}}{t} = \frac{1}{2} \left[(4\mathbf{i} - 7\mathbf{j}) - (-2\mathbf{i} + \mathbf{j}) \right] = 3\mathbf{i} - 4\mathbf{j}$	M1 A1	
	<i>(b)</i>	F = ma = 5(3i - 4j) mag. of $F = 5\sqrt{(3^2 + 4^2)} = 25$ N	M1 M1 A1	
		req'd angle = $\tan^{-1}\frac{3}{4} = 37^{\circ}$ to nearest degree	M1 A1	(7)
2.	(a)	cons. of mom: $3mu - 2mu = 2mv$ (dir ⁿ of <i>B</i> after coll. taken as +ve)	M2	
		$mu = 2mv \therefore v = \frac{1}{2}u$	A1	
		hence, speed of B halved and change of sign means dir ⁿ has reversed	B1	
	<i>(b)</i>	impulse = Δ mom: i.e. for A, $9m = 0 - (-3mu)$	M2	
	(-)	$9m = 3mu \therefore u = 3$	A1	(7)
3.		$\begin{array}{cccc} T & & T \\ -x \rightarrow B & A & & T \\ \hline \end{array}$		
	1	100g $60g$ $20g$		
	(a)	resolve \uparrow : $3T = 180g$	M1	
		T = 60g, so tension in cable at $P = 120g$.	A1	
	<i>(b)</i>	moments about <i>P</i> : $100gx + 60g(1.25) + 20g(1.5) = 3T$ 100gx = 75g, so $x = 0.75$ and hence $BP = 0.75m$	M2 A1 M1 A1	
	(c)	(i) weight acts at middle of platform(ii) platform doesn't bend	B1 B1	(9)
4.	(a)	use of $s = ut + \frac{1}{2}at^2$ for <i>OL</i> (54m, $t = 1$) and <i>OM</i> (144m, $t = 4$)	M2	
		to give $54 = u + \frac{1}{2}a$ and $144 = 4u + 8a$	A1	
		solve simult. to give $a = -12 \text{ms}^{-2}$	M1 A1	
	<i>(b)</i>	for ON , $u = 60$, $a = -12$, $v = 0$	M1	
		$v^2 = u^2 + 2as$, so $0 = 3600 - 24s$ s = 150m, so $MN = 150 - 144 = 6m$.	M1 M1 A1	(9)
		5 - 150 milli, so $milli - 150 - 144 - 0$ milli.	MI AI	()
5.	(a)			
		H		
		↓ W	D A	
			B2	
	<i>(b)</i>	resolve perp. to plane: $R - 2g\cos 30^\circ = 0$ \therefore $R = g\sqrt{3}$	M1 A1	
		$F = \mu R = \frac{1}{\sqrt{3}} g\sqrt{3} = g$	M1 A1	
		resolve // to plane: $H - F - 2g\sin 30^\circ = 0$	M1	
		$H = g = 0 \therefore H = 2g$	A1	
		F: H = g: 2g = 1:2	A1	
	(c)	friction varies between μR up plane (to prevent movement down plane) and μR down plane (to prevent movement up plane)	B2	(11)

I	R_{c}	
$R_{\rm v}$	T T	D

6.

7.

(a)	$\operatorname{acc}^{n} = \frac{25-0}{20} = \frac{5}{4} \text{ ms}^{-2}$	M1 A1	
	for car and van, eqn. of motion is $D - 1200 = 2000 \times \frac{5}{4}$ D = 3700 N	M1 A1	
(b)	1200 divided in ratio 1.25 : 0.75 i.e. 5 : 3 car resistance = $\frac{5}{8} \times 1200 = 750$ N, so caravan resistance is 450 N	M1 A1	
	for car, eqn. of motion is $3700 - 750 - T = 1250 \times \frac{5}{4}$ T = 1387.5 N	M1 A1	
(c)	for van, $-450 = 750a$ $\therefore a = -\frac{3}{5}$ ms ⁻²	M1A1	
	$u = 25, v = 0, a = \frac{-3}{5}$ use $v^2 = u^2 + 2as$	M1	
	$0 = 625 - \frac{6}{5}s$: $s = 520.8$ m	M1 A1	
(d)	e.g. caravan may nose down at front, may not stay in a straight line so dist. likely to be less than that calculated in (c)	B1 B1	(15)
(a)	dist. between Alison and Bill = $\sqrt{[(-5)^2 + 12^2)}$ = 13 km	M1 A1	
<i>(b)</i>	$ 3\mathbf{i} + \mathbf{j} = \sqrt{10}; \text{ speed} = 2\sqrt{10}$ $\therefore \mathbf{v} = 2(3\mathbf{i} + \mathbf{j}) = 6\mathbf{i} + 2\mathbf{j}$	M1 M1 A1	
(C)	after t hours, Alison is at $(2t)\mathbf{i} + (5t)\mathbf{j}$ Bill is at $(6t - 5)\mathbf{i} + (2t + 12)\mathbf{j}$ rel to A, pos ⁿ vector of B is $(6t - 5 - 2t)\mathbf{i} + (2t + 12 - 5t)\mathbf{j}$ = $(4t - 5)\mathbf{i} + (12 - 3t)\mathbf{j}$ km	M1 A1 A1 M1 A1	
(d)	$d^{2} = (4t - 5)^{2} + (12 - 3t)^{2}$ = 16t ² - 40t + 25 + 144 - 72t + 9t ² = 25t ² - 112t + 169	M1 A1	
(e)	$d^{2} < 121 \therefore \ 25t^{2} - 112t + 169 < 121$ 25t ² - 112t + 48 < 0, so (25t - 12)(t - 4) < 0 suitable method to get $\frac{12}{25} < t < 4$	M1 A1 M1 A1	
	length of time = $3\frac{13}{25}$ hours = 3 hours 31 minutes (to nearest minute)	A1	(17)

Total (75)

Performance Record – M1 Paper B

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	\mathbf{i} , \mathbf{j} vectors, F = ma	cons. of mom., impulse	moments, modelling	uniform accel.	statics incl. friction	connected bodies	speed, rel. posn.	
Marks	7	7	9	9	11	15	17	75
Student								