FOR EDEXCEL

GCE Examinations Advanced Subsidiary

Core Mathematics C4

Paper A Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

			eave lank
1.	A curve has the equation		
	$x^2(2+y) - y^2 = 0.$		
	Find an avaragian for $\frac{dy}{dy}$ in terms of y and y		
	Find an expression for $\frac{dy}{dx}$ in terms of x and y. ((6)	
		-	
		-	
		-	
		_	
		_	
		_	
		-	
		-	
		-	
		_	
		_	
		_	
		-	
		-	
		-	
		_	
		_	
		_	
		_	
		_	
		-	
		-	
		-	
		-	
		-	

				Leave blank
2.		$f(x) = \frac{3}{\sqrt{1-x}}, x < 1.$		
	(a)	Show that $f(\frac{1}{10}) = \sqrt{10}$.	(2)	
	(b)	Expand $f(x)$ in ascending powers of x up to and including the term in x^3 , simplifying each coefficient.	(3)	
	(c)	Use your expansion to find an approximate value for $\sqrt{10}$, giving your answer to 8 significant figures.	(1)	
	(d)	Find, to 1 significant figure, the percentage error in your answer to part (c).	(2)	

Relative to a fixed origin, O, the line l has the equation		Lea bla
$\mathbf{r} = (\mathbf{i} + p\mathbf{j} - 5\mathbf{k}) + \lambda(3\mathbf{i} - \mathbf{j} + q\mathbf{k}),$		
where p and q are constants and λ is a scalar parameter.		
(a) find the values of p and q ,	(3)	
(b) show that the point B with coordinates $(25, -1, 11)$ also lies on l.	(2)	
The point C lies on l and is such that OC is perpendicular to l .		
(c) Find the coordinates of C.	(4)	
(d) Find the ratio $AC: CB$	(2)	
		1
	 where <i>p</i> and <i>q</i> are constants and λ is a scalar parameter. Given that the point <i>A</i> with coordinates (-5, 9, -9) lies on <i>l</i>, (<i>a</i>) find the values of <i>p</i> and <i>q</i>, (<i>b</i>) show that the point <i>B</i> with coordinates (25, -1, 11) also lies on <i>l</i>. The point <i>C</i> lies on <i>l</i> and is such that <i>OC</i> is perpendicular to <i>l</i>. (<i>c</i>) Find the coordinates of <i>C</i>. (<i>d</i>) Find the ratio <i>AC</i> : <i>CB</i> 	$\mathbf{r} = (\mathbf{i} + p\mathbf{j} - 5\mathbf{k}) + \lambda(3\mathbf{i} - \mathbf{j} + q\mathbf{k}),$ where <i>p</i> and <i>q</i> are constants and λ is a scalar parameter. Given that the point <i>A</i> with coordinates (-5, 9, -9) lies on <i>l</i> , (<i>a</i>) find the values of <i>p</i> and <i>q</i> , (3) (<i>b</i>) show that the point <i>B</i> with coordinates (25, -1, 11) also lies on <i>l</i> . (2) The point <i>C</i> lies on <i>l</i> and is such that <i>OC</i> is perpendicular to <i>l</i> . (<i>c</i>) Find the coordinates of <i>C</i> . (4)

3.	continued	Leave blank

4. During a chemical reaction, a compound is being made from two other substances. At time t hours after the start of the reaction, x g of the compound has been produced. Assuming that x = 0 initially, and that

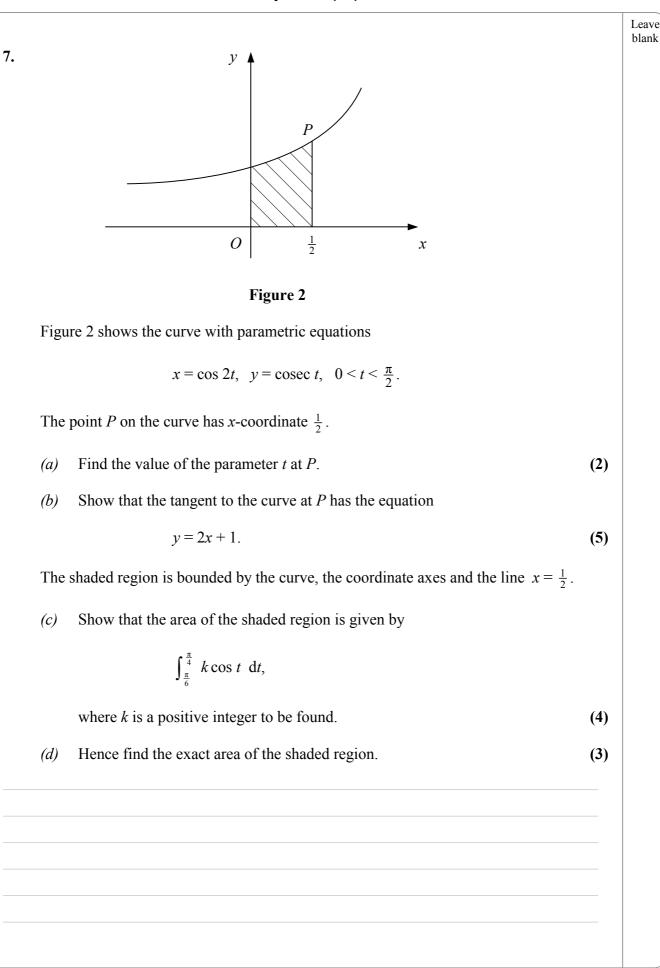
$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2(x-6)(x-3),$$

(a) show that it takes approximately 7 minutes to produce 2 g of the compound. (10)

(b) Explain why it is not possible to produce 3 g of the compound.

(2)

Leave blank


4. continued	d	Leave blank

5. continued	Leave blank

				Leave blank
	6.	(a)	Find	
			$\int 2\sin 3x \sin 2x dx. \tag{4}$	
		(b)	Use the substitution $u^2 = x + 1$ to evaluate	
			r^3 r^2	
			$\int_{0}^{3} \frac{x^{2}}{\sqrt{x+1}} \mathrm{d}x. \tag{8}$	
\square				

6. continued	bl	Leave olank

	Lea
7. continued	bla
7. continued	

7. continued	Leave blank
END	