GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S2

Paper A MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S2 Paper A – Marking Guide

1.	(a)	median = 125 m IQR = middle half = 25 m (or 137.5 – 112.5)	A1 M1 A1	
	<i>(b)</i>	e.g. likely to have higher prob. dens. near median and some values more than 25 m away from median	B2	(5)
2.	(a)	$= 1 - F(5) = 1 - \frac{1}{64} (80 - 25) = \frac{9}{64}$	M1 A1	
	<i>(b)</i>	$f(x) = F'(x) = \frac{1}{64} (16 - 2x)$	M1 A1	
		$\therefore f(x) = \begin{cases} \frac{1}{32} (8 - x), & 0 \le x \le 8, \\ 0, & \text{otherwise.} \end{cases}$	A1	
	(c)	f(x)		
		O 8 x	В3	(8)
3.	(a)	e.g. requests for repairs likely to occur singly, at random and at a constant rate $\lambda = \frac{180}{40} = 4.5$	B3 A1	
	(b)	let $X =$ no. of repairs per day $\therefore X \sim Po(4.5)$ (i) $P(X=0) = 0.0111$ (ii) $P(X>6) = 1 - P(X \le 6) = 1 - 0.8311 = 0.1689$	A1 M1 A1	
	(c)	let $Y =$ no. of days he repairs more than $6 \therefore Y \sim B(10, 0.1689)$ P(Y = 3) = ${}^{10}C_3(0.1689)^3(0.8311)^7 = 0.158$ (3sf)	M1 M1 A1	(10)
4.	(a)	e.g. quicker; may not be able to get all pupils to respond	B2	
	(b)	school roll	B1	
	(c)	let X = no. of students who play tennis $\therefore X \sim B(120, \frac{1}{20})$	M1	
		$H_0: p = \frac{1}{20}$ $H_1: p \neq \frac{1}{20}$	B1	
		Using Po approx. $X \approx \sim Po(6)$ P(X \le 2) = 0.0620; P(X \le 10) = 0.9574	M1	
		$P(X \le 2) = 0.0620; P(X \le 10) = 0.9374$ ∴ C.R. is $X \le 2$ or $X \ge 11$	M1 A1 A1	
	(d)	0.0620 + 0.0426 = 0.1046	A1	(10)

www.dynamicpapers.com

5.	(a)	let $X =$ no. out of 10 shares that have gone up $\therefore X \sim B(10, 0.35)$	M1		
		(i) $P(X=6) = 0.9740 - 0.9051 = 0.0689$	M1 A1		
		(ii) $P(> 5 \text{ gone down}) = P(X \le 4) = 0.7515$	M1 A1		
	(b)	let $Y =$ no. out of 80 shares that have gone down $\therefore Y \sim B(80, 0.65)$	M1		
	(b)	N approx. $D \sim N(52, 18.2)$	M1 A1		
		$P(Y > 55) \approx P(D > 55.5)$	MI AI M1		
			Al		
		$= P(Z > \frac{55.5 - 52}{\sqrt{18.2}}) = P(Z > 0.82)$			
		= 1 - 0.7939 = 0.2061	A1	(11)	
6.	(a)	Poisson with $\lambda = 4$	B1		
	<i>(b)</i>	e.g. more people shopping \therefore probably sell more so λ higher	B1		
	(c)	(i) let $X = \text{no. of sales per hour } \therefore X \sim \text{Po}(4)$			
		$P(X > 4) = 1 - P(X \le 4) = 1 - 0.6288 = 0.3712$	M1 A1		
		(ii) let $Y = \text{no. of sales per half-hour } \therefore Y \sim \text{Po}(2)$	M1		
		P(Y=0) = 0.1353	A1		
		(iii) $(0.3712)^3 = 0.0511$ (3sf)	M1 A1		
	(d)	$H_0: \lambda = 4$ $H_1: \lambda > 4$	B1		
	(4)	$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.8893 = 0.1107$	M1 A1		
		more than 5% \therefore not significant, insufficient evidence of increase	Al	(12)	
7.	(a)	$\int_{0}^{3} k(t^{2} + 2) dt = 1$	M1		
		$\therefore k[\frac{1}{3}t^3 + 2t]_0^3 = 1$	A1		
		$\therefore \ k[(9+6)-(0)] = 1; \ 15k = 1; \ k = \frac{1}{15}$	M1 A1		
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
	<i>(b)</i>	$f(t)$ $\frac{11}{15}$ $\frac{2}{15}$			
		O 3 x	В3		
	(c)	3	A1		
		e ³			
	(d)	$E(T) = \int_0^3 t \times \frac{1}{15} (t^2 + 2) dt = \frac{1}{15} \int_0^3 t^3 + 2t dt$	M1		
		$= \frac{1}{15} \left[\frac{1}{4} t^4 + t^2 \right]_0^3$	M1 A1		
		$= \frac{1}{15} \left[\left(\frac{81}{4} + 9 \right) - (0) \right] = \frac{39}{20} \text{ or } 1.95$	M1 A1		
	(e)	$E(T^{2}) = \int_{0}^{3} t^{2} \times \frac{1}{15} (t^{2} + 2) dt = \frac{1}{15} \int_{0}^{3} t^{4} + 2t^{2} dt$	M1		
		$= \frac{1}{15} \left[\frac{1}{5} t^5 + \frac{2}{2} t^3 \right]_0^3$	A1		
		$\frac{15}{15} \operatorname{L} \frac{5}{5} \operatorname{L} \frac{1}{3} \operatorname{L} \frac{1}{3} \operatorname{L} \frac{1}{9} \operatorname{L}$			

 $= \frac{1}{15} \left[\left(\frac{243}{5} + 18 \right) - (0) \right] = \frac{111}{25}$ $Var(T) = \frac{111}{25} - \left(\frac{39}{20} \right)^2 = \frac{255}{400} = \frac{51}{80} = 0.6375$ $\therefore \text{ std. dev} = \sqrt{0.6375} = 0.798 \text{ (3sf)}$ $A1 \qquad (19)$

Total (75)

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	rect. dist.	c.d.f., p.d.f.	Poisson, binomial	sampling, Po appr. to binomial, hyp. test	binomial, N approx.	Poisson, hyp. test	p.d.f., mode, mean, variance	
Marks	5	8	10	10	11	12	19	75
Student								

Performance Record – S2 Paper A