

Mark Scheme (Results)

Summer 2012

GCE Statistics S1 (6683) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA033137
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012 6683 Statistics S1 Mark Scheme

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c| \text{ , leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a| \text{ , leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Summer 2012 www.dynamicpapers.com 6683 Statistics S1 **Mark Scheme**

Question				Sch	eme			Marks
1.	Х	-1	0	1	2			M1
(a)	P(X = x)	4 <i>k</i>	k	0	k			IVII
	4k + k + (0) +						(Allow verify approach)	A1
		6 <i>k</i>	=1 ⇒	$k = \frac{1}{6}$	(*)			A1cso (3)
(b)	$[\mathrm{E}(X)] = -4k$	(+0+0)	+ 2k <u>or</u>	-2k	<u>or</u> -	$-1\times\frac{4}{6}+3$	$2 \times \frac{1}{6}$	M1
							$=-\frac{1}{3}$ (or -0.5)	A1 (2)
(c)	$\left[\mathrm{E}\left(X^{2}\right)\right] = \left(\frac{1}{2}\right)^{2}$	$(-1)^2 \times 4k + ($	(0+0)+2	2^2k or	4k + 4	k <u>or</u>	$(-1)^2 \times \frac{4}{6} + 2^2 \times \frac{1}{6}$ (o.e.)	M1
							$=\frac{4}{3} \qquad (*)$	A1cso (2)
(d)	$[\operatorname{Var}(X)] = \frac{4}{3}$	$-\left(-\frac{1}{3}\right)^2 \text{ or } 8$	$3k-4k^2 =$	$=\left[\frac{11}{9}\right]$	Y = Pro	1 – 3 <i>X</i> :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1
	Var(1-3X)	$= \left(-3\right)^2 \text{Var}$	(X) <u>or</u> 9	Var(X)	E(Y	(2) = 90i	$k \text{ and } Var(Y) = 90k - 144k^2$	M1
					= 11			A1 cao (3)
							[10]	
	Notes						4 1 077	
(a)	M1 for attempt at $P(X = x)$ with at least 2 correct. Do not give for 4, 1, etc but $\frac{4}{6}$, $\frac{1}{6}$ are OK							
	1st A1 for at least $4k + k + k = 1$ seen. Allow $\frac{4}{6} + \frac{1}{6} + \frac{1}{6} = 1$ [Must see = 1]							
	2^{nd} A1cso provided previous 2 marks are scored and no incorrect working seen It's not essential to see $P(X = -1) = 4k$ etc but if wrongly assigned probabilities such as							
							the final A1 is lost.	itties such as
Verify							is "therefore $k = \frac{1}{6}$ "	
(L)		•					(d) is M0. Do not apply IS	
(b)							probabilities. Allow in term	18 O1 K.
	A1 fo	or $-\frac{1}{3}$ or ex	act equiv	alent or	ıly. Jus	$t - \frac{1}{3}$ sc	ores M1A1	
(c)								
	A1cso fo	or M1 seen	leading to	o $\frac{4}{3}$ or a	ny exac	t equiva	llent. Condone $-1^2 \times 4k$ but	-4k
(d)	for correct attempt at $Var(X)$ - follow through their $E(X)$ and allow in terms of k Award if a correct formula is seen and some correct substitution made.							
	2^{nd} M1 for correct use of $\text{Var}(aX+b)$. Condone -3^2 Var(X) if it eventually yields $9\text{Var}(X)$ A1cao for 11 only							

www.dynamicpapers.com

Question						
2. (a)	$\left[S_{xy} = \right] 23070 - \frac{477 \times 480}{12} [=3990]$	B1				
	$r = \frac{"3990"}{\sqrt{5606.25 \times 4244}}$	M1				
	= 0.81799 awrt 0.818	A1	(3)			
(b)	0.818	B1ft	(1)			
(c)	Positive correlation <u>or</u> value of r is close to 1 <u>or</u> value of $r > 0$ (NOT "high/ strong correlation")					
	So there is support for the bank's claim or "increase in unemployment is accompanied by increase in house					
	repossessions"		[6]			
	Notes					
(a)	Marks for part (a) must be seen in (a), do not award if only seen in (b)				
	B1 for a correct expression for S_{xy}					
	M1 for correct attempt at r f.t. their 3990 but $\frac{23070}{\sqrt{5606.25 \times 4244}}$ is M0					
	A1 for awrt 0.818 If an answer of 0.82 only is seen then B1M1A0 can be given					
(b)	B1ft for awrt 0.818 or f.t. their answer to part (a) for $ r < 1$. Allow 2sf or 1sf follow through Answer in (b) must be correct or match one of their answers in (a). Must be a number.					
(c)	1 st B1 for a reason of positive correlation (allow even if $r > 1$)					
	"positive skew" or "positive gradient" is B0 but 2 nd B1 is still possible 2 nd B1 for a comment that suggest this supports the claim.					
	Marks in (c) are independent but first B1 requires some idea of <u>positive</u> cor	relation				
(c) SC	If $ r < 0.2$ allow this alternative to the mark scheme:					
	1 st B1 for saying there is no or little correlation					
	2 nd B1 for a comment that says this does <u>not</u> support the bank's claim					

Question	Scheme www.dynamicpapers.o	om Marks
3. (a)	11 10 10 15 20 25 30 35 p	Use overlay B1 B1
(b)	Points (appear to) lie close to a (straight) line or "strong /high correlation"	B1 (1)
(c)	$\sum p = 93 \text{ and } \sum t = 34$ (may be seen in table) $S_{pt} = 694 - \frac{"93" \times "34"}{6} = [167] \text{ or } S_{pp} = 1967 - \frac{"93"^2}{6} = [525.5]$ $S_{pt} = 167 \text{ ; } S_{pp} = \text{awrt } 526$	M1 M1 A1; A1 (4)
	$b = \left[\frac{S_{pt}}{S_{pp}}\right] = \frac{"167"}{"525.5"} = [0.31779]$ (check their answer if expression not seen) $a = \frac{"34"}{6} - "0.31779" \times \frac{"93"}{6} = 5.666 0.31779 \times 15.5 = , 0.74088 \text{ awrt } 0.74$ $t = 0.741 + \mathbf{0.318p} \text{(Accept } a = \frac{2336}{3153} \text{ and } b = \frac{334}{1051} \text{ in their equation)}$	B1ft M1, A1 A1 (4)
(e)	$(\overline{p}, \overline{t})$ = (15.5, 5.7) plotted on the graph (not wholly outside the circle) Correct line plotted as per overlay. For $p = 5$; $2 < t < 3$ and for $p = 30$; $10 < t < 11$ Their line must stretch roughly as far as the points and go through the $(\overline{p}, \overline{t})$ circle	B1 B1 (2)
(f)	$t = "0.741" + "0.318" \times 16$ = 5.825 awrt 5.8	M1 A1 (2) [15]
(a)	Notes B2 for all 6 data points plotted correctly. B1 for any 5 correct. Points not wholly outsi	de the circles.
(c)	1 st M1 for attempting $\sum p$ and $\sum t$. Allow $80 < \sum p < 100$ and $30 < \sum t < 40$ 2 nd M1 for one correct expression for S_{pt} or S_{pp} , f.t. their $\sum p$ and $\sum t$. 1 st A1 for S_{pp}	
(d)	B1ft for correct expression for the gradient, f.t. their 167 and 525.5 from (c) M1 for correct use of $a = \overline{t} - b\overline{p}$ f.t. their values. Condone 5.6 for \overline{t} 1 st A1 for awrt 0.74 NB use of 526 gives 0.745566 and gets A0 2 nd A1 for a correct equation for t in terms of p with a and b awrt 3sf An equn in y	or x is A0
(f)	M1 for clear use of their line (equation or on graph) and $p = 16$ to estimate t . This may be an expression or lines marked on the diagram for awrt 5.8, even if their line is not fully correct. Accept " $t > 5.8$ " (oe). Ans	wer only 2/2

Quest	tion	Scheme		Marks	
4.	(a)	B, W or T, W [accept $B \cup T, W$ or $B \cap T, W$] [Condone $P(B)$, $P(W)$ etc]	B1		
		Since there is no <u>overlap</u> between the events <u>or</u> cannot happen together (o.e.) (Accept comment in context e.g. "no one walks and takes the train")	B1	(2)	
	(b)	e.g. $P(B) = \frac{9}{25}$, $P(T) = \frac{8}{25}$, $P(B \cap T) = \frac{5}{25}$	M1		
		$P(B \cap T) \neq P(B) \times P(T)$ [0.2 \neq 0.36 \times 0.32 = 0.1152 o.e.]	M1		
		So B and T are <u>not</u> independent	A1cso	(3)	
	(c)	$[P(W) =] \frac{7}{25} \text{ or } 0.28$	B1	(1)	
	(d)	$[P(B \cap T) =] \frac{5}{25} \underline{\text{or}} \frac{1}{5} \underline{\text{or}} 0.2$	B1	(1)	
	(e)	$[P(T \mid B) =] \frac{P(T \cap B)}{P(B)} = \frac{\text{"(d)"}}{(5+4)/25}$	M1		
		$=\frac{5}{9}$ or $0.\$$	A1	(2)	
				[9]	
		Notes			
	(a)	1 st B1 for a suitable pair. Do not accept universally exclusive pairs such as B and C C and C) etc	
	(b)	 1st M1 for an attempt at all required probabilities with labels for a suitable test (allowance) Accept use of <i>A</i> and <i>B</i> as long as they can be identified as <i>B</i> and <i>T</i> by correct Must be probabilities not integers such as 5, 9, 8 etc for both these M marks 2nd M1 for P(B)×P(T) evaluated (correct for their probabilities) or P(B∩T) ≠ P(B)×P(T) stated or implied in symbols or using their probabilities or P(B T) ≠ P(B) or P(T B) ≠ P(T) stated or implied in symbols or using their A1 for a conclusion of not independent. Requires all probabilities used to be corrected as a suitable test (allowance) and the probabilities or P(B)×P(T) evaluated. 	probabil s. probabili	ities ties.	
		NB $P(B T) = \frac{5}{8} \& P(B) = \frac{9}{25}$ or $P(T B) = \frac{5}{9} \& P(T) = \frac{8}{25}$ seen, followed by conclusion scores 3/3	y a correc	et	
	(e)	M1 for a correct ratio of probabilities e.g. $\frac{\frac{5}{25}}{\frac{(5+4)}{25}}$ or $\frac{5}{5+4}$ or A correct ratio expression and at least one correct (or correct f.t.) probability so A1 for $\frac{5}{9}$ with no incorrect working seen but $\frac{5}{9}$ following from P(B T) is 0/2. $\frac{5}{9}$			

50	www.dynamicpapers.o	Marks		
One large square = $20 \text{ cars } \underline{\text{or}}$ one small	square = $\frac{450}{"562.5"}$ (o.e. e.g. $\frac{"562.5"}{450}$) square = 0.8 cars <u>or</u> 1 car = 1.25 squares	M1 A1 dM1 A1 (4)		
$[\overline{x}] = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30}{450}$		M1 M1 A1 (3)		
$[Q_2 =] 20 + \frac{195}{240} \times 10$ (o.e.) [Allow use of $(n+1)$ giving 195.5 instead of 195]				
$Q_2 < \overline{x}$ So positive skew	[Condone $Q_2 \approx \overline{x}$] [so (almost) symmetric]	A1 (2) B1ft dB1ft (2)		
If chose $\underline{\text{skew}}$ in (d)] median (Q_2) ince the data is skewed or nedian not affected by extreme values	[If chose <u>symmetric</u> in (d)] mean (\bar{x}) Since it uses all the data	B1 dB1 (2)		
Not	tes	[13]		
for attempt to count squares (accept "22.5" in [22, 23] and "562.5" in [550, 575]) and use 450 to obtain a measure of scale. [If using fd must use 450 to obtain scale factor] 1st A1 for a correct calc. for 20 or 0.8 or 1.25 etc [May be fd = 4 to 1 large sq. or 0.8 to 1 small sq. May be on the diagram.] 2nd dM1 dep on 1st M1 for correctly counting squares for > 35 mph and forming suitable expr' 2nd A1 for 90 with no incorrect working seen. e.g. $\frac{4.5}{22.5} \times 450$ scores M1A1M1 and A1 when = 90 is seen. Answer only is 4/4				
1^{st} M1 for clear, sensible use of mid-points at least 3 of (12.5, 25, 32.5, 37.5, 42.5) seen 2^{nd} M1 for an expression for \overline{x} (at least 3 correct terms on num' and a compatible denominator) Follow through their frequencies. You may see these fractions: $\frac{16218.75}{562.5}$ (small squares), $\frac{12975}{450}$ (frequencies), $\frac{648.75}{22.5}$ (large squares) A1 for awrt 28.8 (answer only is 3/3)				
M1 for a full expression for median (using their frequencies). May see e.g. $25 + \frac{75}{120} \times 5$ etc Do nor accept boundaries of 19.5 or 20.5, these are M0A0 for awrt 28.1 (answer only is 2/2) [For use of $(n + 1)$ accept 28.15 but not 28.2]				
1 st B1ft for a correct statement about their Q_2 and \overline{x} [Condone $Q_2 \approx \overline{x}$ only if $ Q_2 - \overline{x} < 1$] Do not accept an argument based on the shape of the graph alone. 2 nd dB1ft dependent on 1 st B1 for a compatible description of skewness. Et their values				
		n (d) only Q_2		
	the large square = 20 cars or one small to > 35 mph is: $4.5 \times "20"$ or $112.5 \times "$ $ \overline{x} = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30 \times 450}{450} $ $ \overline{x} = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30 \times 450}{450} $ The square is a square of the square is a sq	$\overline{v} = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30 \times 37.5 + 60 \times 42.5}{450} = \frac{12975}{450}$ $= 28.83 \text{ or } \frac{173}{6} \text{ awrt } \frac{28.8}{450}$ $= 28.83 \text{ or } \frac{173}{6} \text{ awrt } \frac{28.8}{28.8}$ $Q_2 = \begin{bmatrix} 20 + \frac{195}{240} \times 10 & \text{(o.e.)} & \text{[Allow use of } (n+1) \text{ giving } 195.5 \text{ instead of } 195 \end{bmatrix}$ $= 28.125 \text{ [Use of } (n+1) \text{ gives } 28.145] \text{ awrt } \frac{28.1}{28.1}$ $Q_2 < \overline{x} \text{ [Condone } Q_2 \approx \overline{x} \text{]}$ $\text{[so (almost) } \frac{1}{8} \text{ symmetric} \text{ in (d)] } \text{ mean } (\overline{x})$ $\text{Since it uses all the data}$ Notes $\frac{1}{8} \text{ M1} \text{ for attempt to count squares (accept "22.5" in [22, 23] and "562.5" in [55] \text{ use } 450 \text{ to obtain a measure of scale. [If using fd must use } 450 \text{ to obtain } 8$ $\frac{1}{8} \text{ M1} \text{ for a correct calc. for } 20 \text{ or } 0.8 \text{ or } 1.25 \text{ etc}$ $\text{[May be } \text{ fd} = 4 \text{ to } 1 \text{ large } \text{ sq. or } 0.8 \text{ to } 1 \text{ small } \text{ sq. May be on the diagram.}$ $\frac{1}{8} \text{ M1} \text{ for olear, sensible use of mid-points at least } 3 \text{ of } (12.5, 25, 32.5, 37.5, 42.5)$ $\frac{1}{8} \text{ M1} \text{ for clear, sensible use of mid-points at least } 3 \text{ of } (12.5, 25, 32.5, 37.5, 42.5)$ $\frac{1}{8} \text{ M1} \text{ for an expression for } \overline{x} \text{ (at least } 3 \text{ correct terms on num' and a compatible enominator)}$ Follow through their frequencies. 10 on or accept boundaries of 19.5 or 20.5, these are M0A0 11 for a full expression for median (using their frequencies). May see e.g. 25 + 25 \text{ do and } 1.25 \text{ monor accept boundaries of } 19.5 \text{ or } 20.5, \text{ these are } M0A0 12 for a wrt 28.1 (answer only is 2/2) [For use of $(n+1)$ accept 28.15 but not 2 monor accept boundaries of 19.5 or 20.5, these are M0A0 13 for a correct statement about their Q_2 and \overline{x} [Condone $Q_2 \approx \overline{x}$ only if $\frac{1}{8}$ Do not accept an argument based on the shape of the graph alone. 14 B1ft dependent on 1^{18} B1 for a compatible description of skewness. F.t. their $Q_1 = 23.4$ and $Q_2 = 33.7 \sim 33.8$ are seen allow comparison of quartiles for 1^{18} B1		

Ques	tion	Scheme	Mai	r ks		
6.	(a)	$\left[z=\right] \pm \left(\frac{150-162}{7.5}\right)$	M1			
		[z=]-1.6	Λ 1			
		[2-j-1.0] $[P(F>150) = P(Z>-1.6) =] = 0.9452(0071)$ awrt <u>0.945</u>	A1 A1	(3)		
		[1(T > 130) - 1(Z > -1.0) -] = 0.9432(0071) awit <u>0.943</u>	AI	(3)		
	(b)	$z = \pm 0.2533 \text{ (or better seen)}$	B1			
		$(\pm)\frac{s-162}{7.5} = 0.2533(47)$	M1			
		$(\pm)\frac{s-162}{7.5} = 0.2533(47)$ $s = 163.9$ awrt <u>164</u>	A1	(3)		
	(c)	$z = \pm 1.2816 \text{ (or better seen)}$	B1			
		$\frac{162 - \mu}{9} = -1.2815515$	M1 A1			
		$\mu = 173.533$ awrt <u>174</u>	A1	(4)		
				[10]		
		Notes		[10]		
	(a)	M1 for attempting to standardise with 150, 162 and 7.5. Accept ± Allow use of symmetry and therefore 174 instead of 150				
		1 st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.945(2) is A1. 2 nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 – 0.9452 then award A0 Correct answer only 3/3				
	(b)	B1 for $(z =) \pm 0.2533$ (or better) seen.				
		Giving $z = \pm 0.25$ or ± 0.253 scores B0 here but may get M1A1 M1 for standardising with s (o.e.), 162 and 7.5, allow \pm , and setting equal to a z	value			
		Only allow $0.24 \le z \le 0.26$ Condone e.g. 160 for 162 etc A1 for awrt 164 (Correct answer only scores B0M1A1)				
		AT 101 awit 104 (Correct answer only scores bolvitAT)				
	(c)	B1 for $(z =) \pm 1.2816$ (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for $z = \text{awrt} \pm 0.25$ M1 for attempting to standardise with 162, 9 and μ , and setting equal to a z value where				
		$1.26 < z < 1.31$. Allow \pm here so signs don't have to be compatible.				
		1^{st} A1 for a correct equation <u>with</u> compatible signs and $1.26 < z < 1.31$ 2^{nd} A1 for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on 1 st	A1			
		An equation $\frac{162 - \mu}{9} = 1.2816$ leading to an answer of $\mu = 174$ is A0A0 <u>unless</u> the	re is clea	ar		
		correct working such as: $\frac{162-x}{9} = 1.2816 \Rightarrow x = \dots : \mu = 162 + (162-x) = 174$ then award A1A1				
	NB	A common error is: $\frac{162 - \mu}{9} = 1.2816$ followed by $\mu = 162 + 9 \times 1.2816 = \text{awrt } 174$	It gets			
		A0A0				

Question	Scheme www.dynamicpapers	.com Marks
7. (a)	0.7 (0.001)	
	0.7 Split (0.021) Shape	B1
	Poor Stitching Labels & 0.03	B1
	0.03 No split (0.009) Labels & 0.7,0.02	B1
		(3)
	(0.97) Split (0.0194)	
	No Poor Stitching	
	(0.98) No split(0.9506)	
(b)	P(Exactly one defect) = $0.03 \times 0.3 + 0.97 \times 0.02$ or $P(PS \cup Split) - 2P(PS \cap Split)$ = $[0.009 + 0.0194 =]$ 0.0284	M1A1ft A1 cao (3)
(c)	P(No defects) = $(1-0.03) \times (1-0.02) \times (1-0.05)$ (or better)	M1
	= 0.90307 awrt <u>0.903</u>	A1 cao (2)
(d)	P(Exactly one defect) = $(b)\times(1-0.05) + (1-0.03)\times(1-0.02)\times0.05$	M1 M1
	$= \text{``0.0284''} \times 0.95 + 0.97 \times 0.98 \times 0.05$	A1ft
	= [0.02698 + 0.04753] = 0.07451 awrt <u>0.0745</u>	A1 cao (4) [12]
	Notes Notes	
(a)	Allow MR of 0.2 for 0.02 or 0.3 for 0.03 on tree diagram to score all M and A1 1 st B1 for 2 branch then 4 branch shape 2 nd dB1 dep. on 1 st B1 for labels showing stitching (accept letters) and 0.03 value of 3 rd dB1 dep. on 1 st B1 for labels showing splitting and 0.7 and 0.02 correctly place [probabilities shown in brackets are <u>not</u> required and any such values given can be	correctly placed
(b)	M1 for $0.03 \times p + 0.02 \times q$ where p and q follow from their tree diagram. Exp 1^{st} A1ft for a fully correct expression. Accept $1-0.7$ for 0.3 and $1-0.03$ for 0.97	
MR	Follow through 0.2 and 0.3 MR only 0.2 for 0.02 \rightarrow 0.203 or 0.3 for 0.03 \rightarrow 0.104 or both \rightarrow 0.23 should score M1A 2^{nd} A1 cao for 0.0284 only (or exact equivalent such as $\frac{71}{2500}$)	1A0
(c)	Do not allow 0.5 as MR of 0.05 so no M or A marks in (c) or (d) M1 for (their 0.97)×(their 0.98)×(1-0.05) (or better) f.t. values from their A1 cao for awrt 0.903	
(d)	1^{st} M1 for one correct triple (or correct ft from their tree) of: $ [0.03 \times 0.3 \times (1-0.05)] + [0.97 \times 0.02 \times (1-0.05)] + [0.97 \times 0.98 \times 0.05] $	
	2 nd M1 for two correct triples or correct ft from their tree and adding <u>or</u> their (b)	$\times (1-0.05)$
MR	1^{st} A1ft for a fully correct expression or f.t. their (b) and 0.2 or 0.3 MR only 0.2 for $0.02 \rightarrow 0.23165$ or 0.3 for $0.03 \rightarrow 0.1331$ or both $\rightarrow 0.2465$ (or awrt 3sf) sco 2^{nd} A1 cao for awrt 0.0745	res M1M1A1A0

www.dynamicpapers.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA033137 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

